
Génération et validation des méthodes de
Runge-Kutta
Overview of four years of study
Alexandre Chapoutot, Julien Alexandre dit Sandretto

Department U2IS

ENSTA ParisTech

RAIM 2018 - Gif-sur-Yvette

Contents

Context
Interval Analysis

Arithmetic and sets
Constraint Satisfaction Problem

Validated Simulation
Simulation of IVP
Validated simulation

Validated Runge-Kutta Methods
Validated schemes
Local Truncation Error
Computation of validated RK
Examples

Differential constraint satisfaction problems
Constraint Programming and Runge-Kutta

CSP to define RK
Experimentations
Cost function to define optimal schemes
Experimentations
Properties

Conclusion
Julien et Alexandre - Runge-Kutta November 13, 2018- 2

Context

Robot’s behavior

A mobile robot. . .

I . . . moves! ⇒ Dynamical system (discrete, continuous, switched,
hybrid, etc)

I drived by actuators ⇒ control
I w.r.t. sensors and design parameters ⇒ uncertainties
I for critical tasks ! (in our case)

Control: synthesis, analysis, verification
Two antinomic facts: reliable results under uncertainties !

Julien et Alexandre - Runge-Kutta November 13, 2018- 3

Interval Analysis Arithmetic and sets

Interval Analysis: the suitable tool

[x] = [x , x] stands for the set of reals x s.t. x ≤ x ≤ x

Arithmetic
Extension of operators (+,−, ∗, /, sin, cos, ...), e.g. [−1, 1] + [1, 3] = [0, 4]
Rounding error handled (1/3 ∈ 0.33333333[3, 4])

Extension of function
[f]([x]) ⊃ f ([x]) = {f (y)|y ∈ [x]}

Interval Integral
Rectangle rule:

∫
[x] f (x ′)dx ′ ∈ [f]([x]).w([x])

Julien et Alexandre - Runge-Kutta November 13, 2018- 4

Interval Analysis Arithmetic and sets

Interval Analysis: the suitable tool

[x] = [x , x] stands for the set of reals x s.t. x ≤ x ≤ x

Arithmetic
Extension of operators (+,−, ∗, /, sin, cos, ...), e.g. [−1, 1] + [1, 3] = [0, 4]
Rounding error handled (1/3 ∈ 0.33333333[3, 4])

Extension of function
[f]([x]) ⊃ f ([x]) = {f (y)|y ∈ [x]}

Interval Integral
Rectangle rule:

∫
[x] f (x ′)dx ′ ∈ [f]([x]).w([x])

Julien et Alexandre - Runge-Kutta November 13, 2018- 4

Interval Analysis Arithmetic and sets

Interval Analysis: the suitable tool
[x] = [x , x] stands for the set of reals x s.t. x ≤ x ≤ x

Arithmetic
Extension of operators (+,−, ∗, /, sin, cos, ...), e.g. [−1, 1] + [1, 3] = [0, 4]
Rounding error handled (1/3 ∈ 0.33333333[3, 4])

Extension of function
[f]([x]) ⊃ f ([x]) = {f (y)|y ∈ [x]}

[x]

f([x]) [f]([x])

Interval Integral
Rectangle rule:

∫
[x] f (x ′)dx ′ ∈ [f]([x]).w([x])

Julien et Alexandre - Runge-Kutta November 13, 2018- 4

Interval Analysis Arithmetic and sets

Interval Analysis: the suitable tool
[x] = [x , x] stands for the set of reals x s.t. x ≤ x ≤ x

Arithmetic
Extension of operators (+,−, ∗, /, sin, cos, ...), e.g. [−1, 1] + [1, 3] = [0, 4]
Rounding error handled (1/3 ∈ 0.33333333[3, 4])

Extension of function
[f]([x]) ⊃ f ([x]) = {f (y)|y ∈ [x]}

[x]

f([x]) [f]([x])

Interval Integral
Rectangle rule:

∫
[x] f (x ′)dx ′ ∈ [f]([x]).w([x])

Julien et Alexandre - Runge-Kutta November 13, 2018- 4

Interval Analysis Constraint Satisfaction Problem

Constraint Satisfaction Problem (CSP)

Branch & Prune for f (x) = 0

f(x)

[x] A classical problem
find x s.t. f (x) = 0 assuming
x ∈ [x].

More generally, a CSP is
I a set of variables V
I a set of domains D
I a set of constraints C.

Julien et Alexandre - Runge-Kutta November 13, 2018- 5

Interval Analysis Constraint Satisfaction Problem

Constraint Satisfaction Problem (CSP)

Branch & Prune for f (x) = 0

f(x)

[x2][x1] A simple method
Interval arithmetic + bisection
strategy
I if 0 6∈ [f]([x]) then no

possible solution in [x]

I if 0 ∈ [f]([x]) then maybe
one solution in [x]

Bisection up to a given limit

Julien et Alexandre - Runge-Kutta November 13, 2018- 5

Interval Analysis Constraint Satisfaction Problem

Constraint Satisfaction Problem (CSP)

Branch & Prune for f (x) = 0

f(x)

[x2][x1]

[x3] [x4]

A simple method
Interval arithmetic + bisection
strategy
I if 0 6∈ [f]([x]) then no

possible solution in [x]

I if 0 ∈ [f]([x]) then maybe
one solution in [x]

Bisection up to a given limit

Julien et Alexandre - Runge-Kutta November 13, 2018- 5

Interval Analysis Constraint Satisfaction Problem

Constraint Satisfaction Problem (CSP)

Branch & Prune for f (x) = 0

f(x)

[x2][x1]

[x3] [x4]

A simple method
Interval arithmetic + bisection
strategy
I if 0 6∈ [f]([x]) then no

possible solution in [x]

I if 0 ∈ [f]([x]) then maybe
one solution in [x]

Bisection up to a given limit

Julien et Alexandre - Runge-Kutta November 13, 2018- 5

Interval Analysis Constraint Satisfaction Problem

Constraint Satisfaction Problem (CSP)

Branch & Prune for f (x) = 0

f(x)

[x12] [x13]

A simple method
Interval arithmetic + bisection
strategy
I if 0 6∈ [f]([x]) then no

possible solution in [x]

I if 0 ∈ [f]([x]) then maybe
one solution in [x]

Bisection up to a given limit

Julien et Alexandre - Runge-Kutta November 13, 2018- 5

Interval Analysis Constraint Satisfaction Problem

Constraint Satisfaction Problem (CSP)

Branch & Prune for f (x) = 0

f(x)

[x14]

A simple method
Interval arithmetic + bisection
strategy
I if 0 6∈ [f]([x]) then no

possible solution in [x]

I if 0 ∈ [f]([x]) then maybe
one solution in [x]

Bisection up to a given limit

Julien et Alexandre - Runge-Kutta November 13, 2018- 5

Interval Analysis Constraint Satisfaction Problem

Constraint Satisfaction Problem (CSP)

Branch & Prune for f (x) = 0

f(x)

[x14]

A simple method
Interval arithmetic + bisection
strategy
I if 0 6∈ [f]([x]) then no

possible solution in [x]

I if 0 ∈ [f]([x]) then maybe
one solution in [x]

Bisection up to a given limit

Some improvements are available [1]
[1] Jaulin et al., “Applied Interval Analysis”, Springer, 2001

Julien et Alexandre - Runge-Kutta November 13, 2018- 5

Validated Simulation Simulation of IVP

Simulation of IVP

Consider an IVP for ODE, over the time interval [0,T]

ẏ = f (y) with y(0) = y0

IVP has a unique solution y(t; y0) if f : Rn → Rn is Lipschitz in y
but for our purpose we suppose f smooth enough, i.e., of class Ck

Numerical integration
Approximate the solution:
I Compute a sequence of time instants: t0 = 0 < t1 < · · · < tn = T

(with a stepsize controller)
I Compute a sequence of values: y0, y1, . . . , yn such that

∀i ∈ {0, . . . , n}, yi ≈ y(ti ; y0) .

Julien et Alexandre - Runge-Kutta November 13, 2018- 6

Validated Simulation Simulation of IVP

Validated Simulation

Goal of validated numerical integration
I Same discretization approach
I Compute a sequence [ỹ0], [ỹ1], . . . , [˜yn−1] such that

∀i ∈ {0, . . . , n}, y(t; y0) ∈ [ỹi],∀t ∈ [ti , ti+1] ,

I and a sequence of values: [y0], [y1], . . . , [yn] such that

∀i ∈ {0, . . . , n}, y(ti ; y0) ∈ [yi] .

Julien et Alexandre - Runge-Kutta November 13, 2018- 7

Validated Simulation Simulation of IVP

Validated Simulation

A two-step approach

Exact solution of
ẏ = f (y(t)), y(0) ∈ [y0]

Safe approximation at discrete
time instants [yi], obtained with
Taylor (Capd, Vnode) or
Runge-Kutta (DynIbex)
validated methods
Safe approximation between

time instants [ỹi], obtained with
a Picard-Lindelöf operator

Julien et Alexandre - Runge-Kutta November 13, 2018- 8

Validated Simulation Simulation of IVP

Validated Simulation

Picard-Lindelöf operator
Formal solution of ODE: yn+1 = yn +

∫ h
0 f (s)ds

Following the rectangle rule, based on Brouwer’s theorem, the
Picard-Lindelöf operator is defined such that:

P([x]) = yn + [0, h][f]([x])

I If P([x]) ⊂ Int([x]), then ODE admits one and only one solution and
this solution is in [x],∀s ∈ [0, h] (even in P([x]))
⇒ and [ỹ] = [x]

I Otherwise [x] is inflated, or h is reduced
Remarks: the rectangle rule can be replaced by any validated scheme
(Taylor series [1] or RK)
[1] Nedialkov et al., “Validated solutions of initial value problems for ordinary differential equations”, Appl. Math. and Comp., 1999

Julien et Alexandre - Runge-Kutta November 13, 2018- 9

Validated Runge-Kutta Methods Validated schemes

State of the art
Taylor methods
They have been developed since 60’s (Moore, Lohner, Makino and Berz,
Corliss and Rhim, Neher et al., Jackson and Nedialkov, etc.)
I prove the existence and uniqueness: high order interval

Picard-Lindelöf
I works very well on various kinds of problems:

I non stiff and moderately stiff linear and non-linear systems,
I with thin uncertainties on initial conditions
I with (a writing process) thin uncertainties on parameters

I very efficient with automatic differentiation techniques
I wrapping effect fighting: interval centered form and QR

decomposition
I many software: AWA, COSY infinity, VNODE-LP, CAPD, etc.

Some extensions
I Taylor polynomial with Hermite-Obreskov (Jackson and Nedialkov)
I Taylor polynomial in Chebyshev basis (T. Dzetkulic)

Julien et Alexandre - Runge-Kutta November 13, 2018- 10

Validated Runge-Kutta Methods Validated schemes

History on Interval Runge-Kutta methods

I Andrzej Marciniak et al. work on this topic since 1999
“The form of ψ(t, y(t)) is very complicated and cannot be

written in a general form for an arbitrary p”

The implementation OOIRK is not freely avalaible.
I Hartmann and Petras, ICIAM 1999

No more information than an abstract of 5 lines.
I Bouissou and Martel, SCAN 2006 (only RK4 method)

Implementation GRKLib is not avaliable
I Bouissou, Chapoutot and Djoudi, NFM 2013 (any explicit RK)

Implementation is not avaliable
I Alexandre dit Sandretto and Chapoutot, 2016 (any explicit and

implicit RK)
implementation DynIBEX is open-source, combine with IBEX

Julien et Alexandre - Runge-Kutta November 13, 2018- 11

Validated Runge-Kutta Methods Validated schemes

Validated Runge-Kutta methods

A validated algorithm

[y`+1] = [Φ] (h, [y`]) + Error of Φ .

Julien et Alexandre - Runge-Kutta November 13, 2018- 12

Validated Runge-Kutta Methods Validated schemes

Validated Runge-Kutta Methods
How validate a RK method ?

Order of Runge-Kutta methods and Local Truncation Error (LTE)

LTE = y(t`; y`−1)− y` = C · hp+1 with C ∈ R.

We need to bound the LTE with guarantee...

Order condition
This condition states that a method of RK family is of order p iff
I the Taylor expansion of the exact solution
I and the Taylor expansion of the numerical methods

have the same p + 1 first coefficients.

Consequence
The LTE is the difference of Lagrange remainders of 2 Taylor expansions

Julien et Alexandre - Runge-Kutta November 13, 2018- 13

Validated Runge-Kutta Methods Local Truncation Error

Validated Runge-Kutta Methods
Theorem 1 (Butcher, 1963)
The qth derivative of the exact solution is given by

y(q) =
∑

r(τ)=q

α(τ)F (τ)(y0) with
r(τ) the order of the rooted tree τ
α(τ) a positive integer
F (τ)(.) elementary differential for τ

We can do the same for the numerical solution:

Theorem 2 (Butcher, 1963)
The qth derivative of the numerical solution is given by

y(q)
1 =

∑
r(τ)=q

γ(τ)φ(τ)α(τ)F (τ)(y0) with γ(τ) a positive integer
φ(τ) depending on a Butcher tableau

Theorem 3, order condition (Butcher, 1963)
A Runge-Kutta method has order p iff φ(τ) = 1

γ(τ) ∀τ, r(τ) 6 p

Julien et Alexandre - Runge-Kutta November 13, 2018- 14

Validated Runge-Kutta Methods Local Truncation Error

LTE formula for explicit and implicit Runge-Kutta

From Theorem 1 and Theorem 2, if a Runge-Kutta has order p then

y(t1; y0)−y1 =
hp+1

(p + 1)!

∑
r(τ)=p+1

α(τ)
[
1−γ(τ)φ(τ)

]
F (τ)(y(ξ)), ξ ∈ [t1, t0]

Remark
In theory, bound the LTE of a Runge-Kutta is a simpler problem:
I for each method the Butcher tableau and the order available
I y(ξ) is enclosed by [ỹ] using Picard-Lindelöf operator

But complex in practice !
Two methods: direct form (symbolic derivatives and trees[1]) or
factorized (automatic differentiation and graphs[2,3])
[1] Alexandre dit Sandretto et al., “Validated explicit and implicit Runge-Kutta methods”, Reliable Computing 2016
[2] Bartha et al., “Computing of B-series by automatic differentiation”, Discrete and continuous dynamical systems, 2014
[3] Mullier et al., “Validated Computation of the Local Truncation Error of Runge-Kutta Methods with Automatic Differentiation”, AD
2016

Julien et Alexandre - Runge-Kutta November 13, 2018- 15

Validated Runge-Kutta Methods Computation of validated RK

Validated Runge-Kutta Methods
⇒ LTE can be bounded, but...

It remains to compute the RK scheme itself:
I Explicit RK: evaluation of f with intervals

Heun’s scheme:

[k1] = [f](tn, [yn]) , [k2] = [f](tn + 1h, [yn] + h1[k1])

[yn+1] = [yn] + h
(

1
2 [k1] +

1
2 [k2]

) 0
1 1

1
2

1
2

I Implicit RK: need to solve a system
Gauss order 4:

[k1] = [f]
(

tn +

(
1
2 −
√

3
6

)
h, [yn] + h

(
1
4 [k1] +

(
1
4 −
√

3
6

)
[k2]

))
[k2] = [f]

(
tn +

(
1
2 +

√
3

6

)
h, [yn] + h

((
1
4 +

√
3

6

)
[k1] +

1
4 [k2]

))
[yn+1] = [yn] + h

(
1
2 [k1] +

1
2 [k2]

)
Julien et Alexandre - Runge-Kutta November 13, 2018- 16

Validated Runge-Kutta Methods Computation of validated RK

Validated Runge-Kutta Methods

Solve a problem with interval analysis: contraction technique∗∗ !
[k1] = [k2] = [k3] = [k4] = [ỹ]
Then, we repeat:

[k1] = [k1] ∩ [f]

(
[yn] + h

(
1
4 [k1] +

(
1
4 −
√

3
6

)
[k2]

))

[k2] = [k2] ∩ [f]

(
[yn] + h

((
1
4 +

√
3

6

)
[k1] +

1
4 [k2]

))

**f is contracting on [ỹ] because of Picard-Lindelöf success (if ci ≤ 1)...

Julien et Alexandre - Runge-Kutta November 13, 2018- 17

Validated Runge-Kutta Methods Examples

Examples
Provides a tube, abstracted by a list of boxes ([yi], [ỹi]):
Initial states: y(0) = (0;−10.3; 0.03), some parameters:
a = 0.2, b = 0.2, c = 5.7

The differential system: ẏ =


−(y1 + y2)

y0 + a ∗ y1

b + y2 ∗ (y0 − c)

Julien et Alexandre - Runge-Kutta November 13, 2018- 18

Validated Runge-Kutta Methods Examples

Examples
A chemical reaction simulated (stiff)


ẏ = z

ż = z2 − 3
0.0001 + y2

with
{

y(0) = 10
z(0) = 0

and t ∈ [0, 50]

Result: Taylor based tools fail around t = 1 (order 5 to 40).
With validated Lobatto-IIIC (order 4), tolerance 10−10, solved in 7.6s

Julien et Alexandre - Runge-Kutta November 13, 2018- 19

Validated Runge-Kutta Methods Examples

Examples
Van Der Pol 50s
Initial states: y(0) = (2, 0), One parameter: µ = 1.0 or 2.0

ẏ =

{
y1

µ ∗ (1− y 2
0) ∗ y1 − y0)

Julien et Alexandre - Runge-Kutta November 13, 2018- 20

Validated Runge-Kutta Methods Examples

Examples
Volterra 6s
Initial states: y(0) = (1.0; 3.0)

The differential system: ẏ =

{
2 ∗ y0 ∗ (1− y1)

−y1 ∗ (1− y0)

Julien et Alexandre - Runge-Kutta November 13, 2018- 20

Validated Runge-Kutta Methods Examples

Examples
Circle 100s
Initial states: y(0) = ([0, 0.1]; [0.95, 1.05])

The differential system: ẏ =

{
−y1

y0

Julien et Alexandre - Runge-Kutta November 13, 2018- 20

Differential constraint satisfaction problems

Dynamical systems

A general settings of dynamical systems

S ≡


ẏ(t) = f(t, y(t), x(t),p),

0 = g(t, y(t), x(t))

0 = h(y(t), x(t))

.

we denote by

Y(T ,Y0,P) = {y(t; y0,p) : t ∈ T , y0 ∈ Y0,p ∈ P} .

the set of solutions

Julien et Alexandre - Runge-Kutta November 13, 2018- 21

Differential constraint satisfaction problems

Example of ODEs with constraints
Production-Destruction systems based on an ODE with parameter
a = 0.3 ẏ0

ẏ1
ẏ2

 =


−y0y1
1 + y0y0y1

1 + y0
− ay1

ay1


and associated to constraints:

y0 + y1 + y2 = 10.0
y0 > 0
y1 > 0
y2 > 0

Initial values, for t ∈ [0, 100], arey0(0)
y1(0)
y2(0)

 =

9.98
0.01
0.01


Julien et Alexandre - Runge-Kutta November 13, 2018- 22

Differential constraint satisfaction problems

ODEs with constraints in DynIBEX – results

Julien et Alexandre - Runge-Kutta November 13, 2018- 23

Differential constraint satisfaction problems

Constraint Satisfaction Differential Problems
CSDP
Let S be a differential system and tend ∈ R+ the time limit. A CSDP is a
NCSP defined by
I a finite set of variables V including the parameters of the differential

systems Si , i.e., (y0,p), a time variable t and some other algebraic
variables q;

I a domain D made of the domain of parameters p : Dp, of initial
values y0 : Dy0 , of the time horizon t : Dt , and the domains of
algebraic variables Dq;

I a set of constraints C which may be defined by set-based constraints
over variables of V and special variables Yi (Dt ,Dy0 ,Dp) representing
the set of the solution of Si in S.

with set-based constraints considered:

g(A) ⊆ B g(A) ⊇ B
g(A) ∩ B = ∅ g(A) ∩ B 6= ∅

Julien et Alexandre - Runge-Kutta November 13, 2018- 24

Differential constraint satisfaction problems

Particular problems considered and temporal properties
We focus on particular problems of robotics involving quantifiers
I Robust controller synthesis: ∃u, ∀p, ∀y0 + temporal constraints
I Parameter synthesis: ∃p, ∀u, ∀y0 + temporal constraints
I etc.

We also defined a set of temporal constraints useful to analyze/design
robotic application.

Verbal property QCSDP translation
Stay in A ∀t ∈ [0, tend], [y](t, v′) ⊆ Int(A)
In A at τ ∃t ∈ [0, tend], [y](t, v′) ⊆ Int(A)

Has crossed A* ∃t ∈ [0, tend], [y](t, v′) ∩ Hull(A) 6= ∅
Go out A ∃t ∈ [0, tend], [y](t, v′) ∩ Hull(A) = ∅

Has reached A* [y](tend, v′) ∩ Hull(A) 6= ∅
Finished in A [y](tend, v′) ⊆ Int(A)

*: shall be used in negative form
Julien et Alexandre - Runge-Kutta November 13, 2018- 25

Differential constraint satisfaction problems

One application: validated path planning

Julien et Alexandre - Runge-Kutta November 13, 2018- 26

Constraint Programming and Runge-Kutta

Second part
Context
Interval Analysis

Arithmetic and sets
Constraint Satisfaction Problem

Validated Simulation
Simulation of IVP
Validated simulation

Validated Runge-Kutta Methods
Validated schemes
Local Truncation Error
Computation of validated RK
Examples

Differential constraint satisfaction problems
Constraint Programming and Runge-Kutta

CSP to define RK
Experimentations
Cost function to define optimal schemes
Experimentations
Properties

Conclusion
Julien et Alexandre - Runge-Kutta November 13, 2018- 27

Constraint Programming and Runge-Kutta CSP to define RK

Constraint Programming and Runge-Kutta

Is it possible to define new RK schemes with IA tools ?
+ Higher order implies smaller LTE
+ Method adapted to a given problem
− Coefficients must be computed with guarantee too !

Julien et Alexandre - Runge-Kutta November 13, 2018- 28

Constraint Programming and Runge-Kutta CSP to define RK

New scheme: a complex problem

Needs to solve constraints
High order polynomials (till p), number of constraints increases rapidly (4
for p = 3, 8 for p = 4, 17, 37, 85, 200)
1.
∑s

1 bi = 1
2.
∑s

1 bici = 1/2
3.
∑s

1 bic2
i = 1/3

∑s
1
∑s

1 biaijcj = 1/6

Classical approach
Solved by using polynomials with known exact zeros such as Legendre
(for Gauss) or Jacobi (for Radau)

Problems
I Discovery of new methods guided by solver and not by requirements
I Solved numerically: additive approximations

I Constraints not satisfied ⇒ Method not at order p, but lower. . .
I Validated methods use LTE: wrong with floating numbers

Julien et Alexandre - Runge-Kutta November 13, 2018- 29

Constraint Programming and Runge-Kutta CSP to define RK

New scheme: a complex problem

Needs to solve constraints
High order polynomials (till p), number of constraints increases rapidly (4
for p = 3, 8 for p = 4, 17, 37, 85, 200)
1.
∑s

1 bi = 1
2.
∑s

1 bici = 1/2
3.
∑s

1 bic2
i = 1/3

∑s
1
∑s

1 biaijcj = 1/6

Classical approach
Solved by using polynomials with known exact zeros such as Legendre
(for Gauss) or Jacobi (for Radau)

Problems
I Discovery of new methods guided by solver and not by requirements
I Solved numerically: additive approximations

I Constraints not satisfied ⇒ Method not at order p, but lower. . .
I Validated methods use LTE: wrong with floating numbers

Julien et Alexandre - Runge-Kutta November 13, 2018- 29

Constraint Programming and Runge-Kutta CSP to define RK

New scheme: a complex problem

Needs to solve constraints
High order polynomials (till p), number of constraints increases rapidly (4
for p = 3, 8 for p = 4, 17, 37, 85, 200)
1.
∑s

1 bi = 1
2.
∑s

1 bici = 1/2
3.
∑s

1 bic2
i = 1/3

∑s
1
∑s

1 biaijcj = 1/6

Classical approach
Solved by using polynomials with known exact zeros such as Legendre
(for Gauss) or Jacobi (for Radau)

Problems
I Discovery of new methods guided by solver and not by requirements
I Solved numerically: additive approximations

I Constraints not satisfied ⇒ Method not at order p, but lower. . .
I Validated methods use LTE: wrong with floating numbers

Julien et Alexandre - Runge-Kutta November 13, 2018- 29

Constraint Programming and Runge-Kutta CSP to define RK

Constraint approach to define new schemes

Variables: Butcher
tableau coefficients

c1 a11 a12 · · · a1s
...

...
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs

Domains: ci ∈ [0, 1],
bj ∈ [−1, 1], aij ∈ [−1, 1]
(a subpart)

Constraints:

Consistency
I ci =

∑
aij with c1 < · · · < cs

Order conditions
Function of order of desired method, example∑

cibiaij − 1/6 = 0

Properties by construction
I Singly diagonal: a1,1 = · · · = as,s

I Explicit: aij = 0,∀j ≥ i
I Diagonal implicit: aij = 0,∀j > i
I Explicit first line: a1,1 = · · · = a1,s = 0
I Stiffly accurate: as,i = bi ,∀i = 1, . . . , s

Julien et Alexandre - Runge-Kutta November 13, 2018- 30

Constraint Programming and Runge-Kutta Experimentations

Re-discover the theory

Only one 2-stage method of order 4
Variables

b[2] in [-1,1];

c[2] in [0,1];

a[2][2] in [-1,1];

Constraints

b(1) +b(2) -1.0=0;

b(1)*c(1) +b(2)*c(2) -1.0/2.0=0;

b(1)*(c(1))^2 +b(2)*(c(2))^2 -1.0/3.0=0;

b(1)*a(1)(1)*c(1) +b(1)*a(1)(2)*c(2) +

b(2)*a(2)(1)*c(1) +b(2)*a(2)(2)*c(2)

-1.0/6.0=0;

b(1)*(c(1))^3 +b(2)*(c(2))^3 -1.0/4.0=0;

b(1)*c(1)*a(1)(1)*c(1) +b(1)*c(1)*a(1)(2)*c(2) +

b(2)*c(2)*a(2)(1)*c(1) +b(2)*c(2)*a(2)(2)*c(2)

-1.0/8.0=0;

b(1)*a(1)(1)*(c(1))^2 +b(1)*a(1)(2)*(c(2))^2 +

b(2)*a(2)(1)*(c(1))^2 +b(2)*a(2)(2)*(c(2))^2

-1.0/12.0=0;

b(1)*a(1)(1)*a(1)(1)*c(1) +b(1)*a(1)(1)*a(1)(2)*c(2) +

b(1)*a(1)(2)*a(2)(1)*c(1) +b(1)*a(1)(2)*a(2)(2)*c(2) +

b(2)*a(2)(1)*a(1)(1)*c(1) +b(2)*a(2)(1)*a(1)(2)*c(2) +

b(2)*a(2)(2)*a(2)(1)*c(1) +b(2)*a(2)(2)*a(2)(2)*c(2)

-1.0/24.0=0;

a(1)(1)+a(1)(2)-c(1) = 0; a(2)(1)+a(2)(2)-c(2) = 0;

c(1) < c(2);

end

Solved with Ibex
number of solutions=1

cpu time used=0.013073s.

([0.5, 0.5] ; [0.5, 0.5] ;

0.21132486540[5,6] ; 0.78867513459[5,6]$

[0.25, 0.25] ; -0.038675134594[9,8]

0.53867513459[5,6] ; [0.25, 0.25])

Julien et Alexandre - Runge-Kutta November 13, 2018- 31

Constraint Programming and Runge-Kutta Experimentations

Re-discover the theory

Only one 2-stage method of order 4
Variables

b[2] in [-1,1];

c[2] in [0,1];

a[2][2] in [-1,1];

Constraints

b(1) +b(2) -1.0=0;

b(1)*c(1) +b(2)*c(2) -1.0/2.0=0;

b(1)*(c(1))^2 +b(2)*(c(2))^2 -1.0/3.0=0;

b(1)*a(1)(1)*c(1) +b(1)*a(1)(2)*c(2) +

b(2)*a(2)(1)*c(1) +b(2)*a(2)(2)*c(2)

-1.0/6.0=0;

b(1)*(c(1))^3 +b(2)*(c(2))^3 -1.0/4.0=0;

b(1)*c(1)*a(1)(1)*c(1) +b(1)*c(1)*a(1)(2)*c(2) +

b(2)*c(2)*a(2)(1)*c(1) +b(2)*c(2)*a(2)(2)*c(2)

-1.0/8.0=0;

b(1)*a(1)(1)*(c(1))^2 +b(1)*a(1)(2)*(c(2))^2 +

b(2)*a(2)(1)*(c(1))^2 +b(2)*a(2)(2)*(c(2))^2

-1.0/12.0=0;

b(1)*a(1)(1)*a(1)(1)*c(1) +b(1)*a(1)(1)*a(1)(2)*c(2) +

b(1)*a(1)(2)*a(2)(1)*c(1) +b(1)*a(1)(2)*a(2)(2)*c(2) +

b(2)*a(2)(1)*a(1)(1)*c(1) +b(2)*a(2)(1)*a(1)(2)*c(2) +

b(2)*a(2)(2)*a(2)(1)*c(1) +b(2)*a(2)(2)*a(2)(2)*c(2)

-1.0/24.0=0;

a(1)(1)+a(1)(2)-c(1) = 0; a(2)(1)+a(2)(2)-c(2) = 0;

c(1) < c(2);

end

Solved with Ibex
number of solutions=1

cpu time used=0.013073s.

([0.5, 0.5] ; [0.5, 0.5] ;

0.21132486540[5,6] ; 0.78867513459[5,6]$

[0.25, 0.25] ; -0.038675134594[9,8]

0.53867513459[5,6] ; [0.25, 0.25])

⇒ Validated Gauss-Legendre !

Julien et Alexandre - Runge-Kutta November 13, 2018- 31

Constraint Programming and Runge-Kutta Experimentations

Re-discover the theory and ...

No 2-stage method of order 5
Proof in 0.04s !

...find new methods
Remark: it is hard to be sure that a method is new...

Julien et Alexandre - Runge-Kutta November 13, 2018- 32

Constraint Programming and Runge-Kutta Experimentations

A method order 4, 3 stages, singly, stiffly accurate

This method is promising: capabilities wanted for a stiff problem, singly
to optimize the Newton solving and stiffly accurate to be more efficient
w.r.t. stiff problems (and DAEs).

0.1610979566[59, 62] 0.105662432[67, 71] 0.172855006[54, 67] -0.117419482[69, 58]
0.655889341[44, 50] 0.482099622[04, 10] 0.105662432[67, 71] 0.068127286[68, 74]

[1, 1] 0.3885453883[37, 75] 0.5057921789[56, 65] 0.105662432[67, 71]
0.3885453883[37, 75] 0.5057921789[56, 65] 0.105662432[67, 71]

Table: New method S3O4

Julien et Alexandre - Runge-Kutta November 13, 2018- 33

Constraint Programming and Runge-Kutta Experimentations

Integration with the new schemes

Implemented in DynIbex (a tool for validated simulation)
Norm of diameter of final solution bounds the global error

Methods time (s) nb of steps norm of diameter of final solution
S3O4 39 1821 5.9 · 10−5

Radau3 52 7509 2 · 10−4

Radau5 81 954 7.6 · 10−5

Table: S3O4 on a stiff problem (oil problem)

⇒ As efficient than Radau at order 5, but faster than order 3 !

Julien et Alexandre - Runge-Kutta November 13, 2018- 34

Constraint Programming and Runge-Kutta Cost function to define optimal schemes

Cost function to define optimal schemes

Problem: continuum of solutions
CSP can be under constrained (e.g., p ≤ s)

Example of countless methods
Countless number of 2-stage; order 2; stiffly accurate; fully implicit

Optimization
I We could find the best one!
I How choose the cost function?

Julien et Alexandre - Runge-Kutta November 13, 2018- 35

Constraint Programming and Runge-Kutta Cost function to define optimal schemes

Cost function to define optimal schemes

Problem: continuum of solutions
CSP can be under constrained (e.g., p ≤ s)

Example of countless methods
Countless number of 2-stage; order 2; stiffly accurate; fully implicit

Optimization
I We could find the best one!
I How choose the cost function?

Julien et Alexandre - Runge-Kutta November 13, 2018- 35

Constraint Programming and Runge-Kutta Cost function to define optimal schemes

Cost function to define optimal schemes

Problem: continuum of solutions
CSP can be under constrained (e.g., p ≤ s)

Example of countless methods
Countless number of 2-stage; order 2; stiffly accurate; fully implicit

Optimization
I We could find the best one!
I How choose the cost function?

Julien et Alexandre - Runge-Kutta November 13, 2018- 35

Constraint Programming and Runge-Kutta Cost function to define optimal schemes

Cost function

Minimizing local truncation error
I Method with lower error for the same order
I Example of general form of ERK with 2 stages and order 2

0 0 0
α α 0

1-1/(2 α) 1/(2 α)
Ralston[1]: α = 2/3 minimizes the sum of square of coefficients of
rooted trees in the lte computation

Our approach: maximizing the order
I Minimizing the sum of squares of order constraints
I Cost easy to compute: direct from constraints
I Same result α ∈ [0.666...6, 0.666...7] !

[1] Ralston, Anthony. ”Runge-Kutta methods with minimum error bounds.” Mathematics of computation (1962).

Julien et Alexandre - Runge-Kutta November 13, 2018- 36

Constraint Programming and Runge-Kutta Cost function to define optimal schemes

Cost function

Minimizing local truncation error
I Method with lower error for the same order
I Example of general form of ERK with 2 stages and order 2

0 0 0
α α 0

1-1/(2 α) 1/(2 α)
Ralston[1]: α = 2/3 minimizes the sum of square of coefficients of
rooted trees in the lte computation

Our approach: maximizing the order
I Minimizing the sum of squares of order constraints
I Cost easy to compute: direct from constraints
I Same result α ∈ [0.666...6, 0.666...7] !

[1] Ralston, Anthony. ”Runge-Kutta methods with minimum error bounds.” Mathematics of computation (1962).

Julien et Alexandre - Runge-Kutta November 13, 2018- 36

Constraint Programming and Runge-Kutta Experimentations

Re-discover the theory

Theory
Countless 2-stage order 2 stiffly accurate fully implicit. But there is only
one method at order 3: RadauIIA.

Optimization of (2,2)
best feasible point (0.749999939992 ; 0.250000060009 ;
0.333333280449 ; 0.999999998633 ;
0.416655823215 ; -0.0833225527662 ;
0.749999932909 ; 0.250000055725)
cpu time used 0.3879s.

with a cost of [−∞, 2.89787805696 · 10−11]: there is an order 3 !

Verification with solver
We add constraints b1 = 0.75 and c2 = 1, then we find RadauIIA

Julien et Alexandre - Runge-Kutta November 13, 2018- 37

Constraint Programming and Runge-Kutta Experimentations

Explicit 3 stages 3 order

Theory (again)
There is countless explicit (3,3)-methods, but there is no order 4 method
with 3 stages.

With optimizer: Erk33
[0, 0] [0, 0] [0, 0] [0, 0]

0.4659048[706, 929] 0.4659048[706, 929] [0, 0] [0, 0]
0.8006855[74, 83] −0.154577[20, 17] 0.9552627[48, 86] [0, 0]

0.19590[599, 600] 0.42961[399, 400] 0.3744800[0, 1]

Comparison to Kutta (known to be efficient)
Norm of order constraints at order 4:
I ERK33: 0.045221[277, 304]

I Kutta: 0.058925
⇒ Our method is then closer to fourth order
than Kutta.

Kutta third order:
0 0 0 0

1/2 1/2 0 0
1 -1 2 0

1/6 2/3 1/6

Julien et Alexandre - Runge-Kutta November 13, 2018- 38

Constraint Programming and Runge-Kutta Experimentations

Integration with Erk33, on VanDerPol

Methods time nb of steps norm of diameter of final solution
ERK33 3.7 647 2.2 · 10−5

Kutta (3,3) 3.55 663 3.4 · 10−5

RK4 (4,4) 4.3 280 1.9 · 10−5

⇒ Equivalent to Kutta in term of time, but performance closer to RK4

Julien et Alexandre - Runge-Kutta November 13, 2018- 39

Constraint Programming and Runge-Kutta Properties

Linear Stability

Example of explicit methods (s=p) [Hairer]

R(z) = 1 + z
∑

j
bj + z2

∑
j,k

bjajk + z3
∑
j,k,l

bjajkakl + . . .

Stability domain given by S = {z ∈ C : |R(z)| ≤ 1}

For RK4: R(z) = 1 + z + z2

2 + z3

6 + z4

24

After z = x + iy , and some processing:

|R(x , y)| =
√

(((((((((0.166667 ∗ x3) ∗ y) + ((0.5 ∗ x2) ∗ y))−
((0.166667 ∗ x) ∗ y3)) + ((1 ∗ x) ∗ y))− (0.166667 ∗ y3)) + y)2 +
(((((((((0.0416667 ∗ x4) + (0.166667 ∗ x3))− ((0.25 ∗ x2) ∗ y2)) + (0.5 ∗
x2))− ((0.5 ∗ x) ∗ y2)) + x) + (0.0416667 ∗ y4))− (0.5 ∗ y2)) + 1)2)) ≤ 1

Julien et Alexandre - Runge-Kutta November 13, 2018- 40

Constraint Programming and Runge-Kutta Properties

Linear Stability

Paving of stability domain for RK4 method with high precision
coefficients (blue) and with error (10−8 and 10−2) on coefficients (red).

Julien et Alexandre - Runge-Kutta November 13, 2018- 41

Constraint Programming and Runge-Kutta Properties

Algebraically stable

Algebraically stable if:
I bi ≥ 0, for all i = 1, . . . , s
I M = (mij) = (biaij + bjaji − bibj)

s
i,j=1 is non-negative definite

Problem to solve
Solving the eigenvalue problem det(A− λI) = 0 (1)
and proving λ > 0.

For 3-stage Runge-Kutta methods:
(m11 − λ) ∗ ((m22 − λ) ∗ (m33 − λ)−m23 ∗m32)−m12 ∗ (m21 ∗ (m33 −
λ)−m23 ∗m31) + m13 ∗ (m21 ∗m32 − (m22 − λ) ∗m31) = 0

With contractor programming (Fwd/Bwd + Newton)
Eq.(1) has no solution in]−∞, 0[≡ M is non-negative definite.

Julien et Alexandre - Runge-Kutta November 13, 2018- 42

Constraint Programming and Runge-Kutta Properties

Algebraically stable

Verification of theory
I Lobatto IIIC: contraction to empty set ⇒ algebraically stable
I Lobatto IIIA: solution found (−0.0481125) ⇒ not algebraically

stable

With floating number
Lobatto IIIC with error of 10−9 on aij : solution found (−1.03041 · 10−05)
⇒ not algebraically stable

Julien et Alexandre - Runge-Kutta November 13, 2018- 43

Constraint Programming and Runge-Kutta Properties

Algebraically stable

Verification of theory
I Lobatto IIIC: contraction to empty set ⇒ algebraically stable
I Lobatto IIIA: solution found (−0.0481125) ⇒ not algebraically

stable

With floating number
Lobatto IIIC with error of 10−9 on aij : solution found (−1.03041 · 10−05)
⇒ not algebraically stable

Julien et Alexandre - Runge-Kutta November 13, 2018- 43

Constraint Programming and Runge-Kutta Properties

Symplectic

Symplectic if M = 0, with M = (mij) = (biaij + bjaji − bibj)
s
i,j=1

Problem to solve
0 ∈ [M] with interval arithmetic

Verification of theory with Gauss-Legendre:

M = 10−17 ·

[−1.38, 1.38] [−2.77, 2.77] [−2.77, 1.38]
[−2.77, 2.77] [−2.77, 2.77] [−1.38, 4.16]
[−2.77, 1.38] [−1.38, 4.16] [−1.38, 1.38]



With a1,2 = 2.0/9.0−
√

15.0/15.0 computed with float

M =

 [−1.38e−17, 1.38e−17] [−1.91e−09,−1.91e−09] [−2.77e−17, 1.38e−17]

[−1.91e−09,−1.91e−09] [−2.77e−17, 2.77e−17] [−1.38e−17, 4.16e−17]
[−2.77e−17, 1.38e−17] [−1.38e−17, 4.16e−17] [−1.38e−17, 1.38e−17]



Julien et Alexandre - Runge-Kutta November 13, 2018- 44

Constraint Programming and Runge-Kutta Properties

Symplectic

Symplectic if M = 0, with M = (mij) = (biaij + bjaji − bibj)
s
i,j=1

Problem to solve
0 ∈ [M] with interval arithmetic

Verification of theory with Gauss-Legendre:

M = 10−17 ·

[−1.38, 1.38] [−2.77, 2.77] [−2.77, 1.38]
[−2.77, 2.77] [−2.77, 2.77] [−1.38, 4.16]
[−2.77, 1.38] [−1.38, 4.16] [−1.38, 1.38]



With a1,2 = 2.0/9.0−
√

15.0/15.0 computed with float

M =

 [−1.38e−17, 1.38e−17] [−1.91e−09,−1.91e−09] [−2.77e−17, 1.38e−17]

[−1.91e−09,−1.91e−09] [−2.77e−17, 2.77e−17] [−1.38e−17, 4.16e−17]
[−2.77e−17, 1.38e−17] [−1.38e−17, 4.16e−17] [−1.38e−17, 1.38e−17]



Julien et Alexandre - Runge-Kutta November 13, 2018- 44

Conclusion

Conclusion

Validated simulation with RK
I Method to bound the LTE
I Contractor based approach to solve Implicit RK
I Good results, even for stiff problems
I Library DynIbex (DAEs, constrained ODEs)

Constraint programming for RK
I Tool to re-discover the theory on RK methods...
I ...and able to define new (optimal) schemes !

Future works
I DynIbex in continuous development
I New RK schemes with higher order
I Solve some open problems

Julien et Alexandre - Runge-Kutta November 13, 2018- 45

Conclusion

Questions ?

Julien et Alexandre - Runge-Kutta November 13, 2018- 46

Appendices

Julien et Alexandre - Runge-Kutta November 13, 2018- 47

	Contents
	Context
	Interval Analysis
	Arithmetic and sets
	Constraint Satisfaction Problem

	Validated Simulation
	Simulation of IVP
	Validated simulation

	Validated Runge-Kutta Methods
	Validated schemes
	Local Truncation Error
	Computation of validated RK
	Examples

	Differential constraint satisfaction problems
	Constraint Programming and Runge-Kutta
	CSP to define RK
	Experimentations
	Cost function to define optimal schemes
	Experimentations
	Properties

	Conclusion
	Appendix

