Generalized Hermite Reduction, Creative Telescoping, and Definite Integration of D-Finite Functions

Frédéric Chyzak

November 12-14, 2018, RAIM'18
Rencontres Arithmétiques du GDR Informatique Mathématique
Based on joint work with A. Bostan, P. Lairez, and B. Salvy

(1) Motivation

(2) Creative telescoping and Chyzak's algorithm for D-finite functions
(Chyzak, 2000)
(3) Hermite reduction and the definite integration of rational functions
(Bostan, Chen, Chyzak, Li, 2010)
(4) Generalized Hermite reduction and the definite integration of D-finite functions
(Bostan, Chyzak, Lairez, Salvy, 2018)
(5) Conclusion

Differentiating under the Integral Sign

Zeilberger's derivation (1982) of a classical integral

$$
\begin{aligned}
& \text { Given } f(b, x)=e^{-x^{2}} \cos 2 b x \text {, find } F(b)=\int_{-\infty}^{+\infty} f(b, x) d x=? \\
& \frac{d F}{d b}(b)=\int_{-\infty}^{+\infty}-2 x e^{-x^{2}} \sin 2 b x d x= \\
& \quad\left[e^{-x^{2}} \sin 2 b x\right]_{x=-\infty}^{x=+\infty}+\int_{-\infty}^{+\infty}-2 b e^{-x^{2}} \cos 2 b x d x=-2 b F(b)
\end{aligned}
$$

Differentiating under the Integral Sign

Zeilberger's derivation (1982) of a classical integral

$$
\text { Given } f(b, x)=e^{-x^{2}} \cos 2 b x, \text { find } F(b)=\int_{-\infty}^{+\infty} f(b, x) d x=?
$$

$$
\begin{aligned}
& \frac{d F}{d b}(b)=\int_{-\infty}^{+\infty}-2 x e^{-x^{2}} \sin 2 b x d x= \\
& \quad\left[e^{-x^{2}} \sin 2 b x\right]_{x=-\infty}^{x=+\infty}+\int_{-\infty}^{+\infty}-2 b e^{-x^{2}} \cos 2 b x d x=-2 b F(b)
\end{aligned}
$$

Continuous form of "Creative Telescoping":

$$
\frac{d f}{d b}(b, x)+2 b f(b, x)=\frac{d g}{d x}(b, x) \text { for } g(b, x)=-\frac{1}{2 x} \frac{d f}{d b}(b, x) .
$$

After integration over x from $-\infty$ to $+\infty$:

$$
\frac{d F}{d b}(b)+2 b F(b)=\left[\frac{d g}{d x}(b, x)\right]_{x=-\infty}^{x=+\infty}=0-0=0 .
$$

Hermite Reduction (1872)

$$
E A-\alpha F A^{\prime}=P \Longrightarrow \int \frac{P}{A^{\alpha+1}}=\frac{F}{A^{\alpha}}+\int \frac{E+F^{\prime}}{A^{\alpha}}
$$

Cela posé, l'intégrale $\int \frac{\mathrm{P} d x}{\mathrm{~A}^{\alpha+1}}$ se traitera comme il suit : nous effeetuerons sur A et sa dérivee A^{\prime} les operations du plus grand commun diviseur, de manière à obtenir deux polynomes G et H, satisfaisant à la condition

$$
\mathrm{AG}-\mathrm{N}^{\prime} \mathrm{H}=1
$$

Nous formerons ensute deux sermes de tonctions entueres:

$$
\begin{aligned}
& \mathrm{V}_{s}, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{2-1}, \\
& \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{k},
\end{aligned}
$$

par ces relations, oú les polynòmes Q, Q_{4}, Q_{2}, \ldots sont entièrement arbitraires, savoir :

$$
\alpha \mathrm{V},=\mathrm{HP}-\mathrm{AQ},
$$

$$
(\alpha-1) V_{1}=H P_{i}-\Delta Q_{1}
$$

$$
(\alpha-3) V_{2}=H P_{1}-A Q_{3},
$$

$$
\mathbf{V}_{a-t}=H P_{x-1}-\Delta Q_{a-11}
$$

$$
\mathbf{P}_{\mathrm{t}}=\mathrm{GP}-\mathrm{A}^{\prime} \mathrm{Q}-\mathrm{V}_{\mathrm{t}}^{\prime},
$$

$$
\mathbf{P}_{3}=G \mathbf{P}_{1}-\mathbf{A}^{\prime} \mathbf{Q}_{1}-\mathbf{V}_{4}^{\prime},
$$

$$
\mathrm{P}_{*}=\mathrm{GP}_{\alpha-1}-\mathrm{A}^{\prime} \mathrm{Q}_{*-1}-\mathrm{Y}_{\alpha_{-1}}^{\prime} .
$$

Maintenant je prouverai qu'en faisant

$$
\begin{aligned}
& \mathrm{V}=\mathrm{V}_{\mathrm{a}}+\mathrm{A} \mathbf{V}_{1}+\mathrm{A}^{:} \mathrm{V}_{\mathrm{z}}+\ldots+\mathrm{A}^{0-1} \mathrm{~V}_{\mathrm{e}-\mathrm{t}}, \\
& \mathrm{U}=\mathbf{P}_{\mathrm{a}}
\end{aligned}
$$

on a l'égalité

$$
\frac{\mathrm{P}}{\mathrm{~A}^{*+1}}=\frac{\mathrm{U}}{\mathrm{~A}}+\left(\frac{\mathrm{V}}{\mathrm{~A}^{c}}\right)^{\prime}
$$

d'ou

$$
\int \frac{\mathrm{P} d x}{\mathrm{~A}^{n+1}}=\int \frac{\mathrm{U} d x}{\mathrm{~A}}+\frac{\mathrm{V}}{\mathrm{~A}^{n}},
$$

de sorte que $\frac{Y}{\Lambda^{6}}$ est la partie algébrique de l'intégrale proposée, et $\int \frac{\mathrm{U} d x}{\boldsymbol{A}}$ la partie transcendante.
A cet effet, j'elimine G et H entre les trois égalités

$$
\begin{aligned}
\mathrm{AG}-\mathrm{A}^{\prime} \mathrm{H} & =\mathbf{1}, \\
(\alpha-i) \mathrm{V}_{i} & =\mathbf{H P _ { i }}-\mathrm{A} Q_{i,} \\
\mathrm{P}_{i+1} & =\mathrm{GP}_{i}-\mathrm{A}^{\prime} \mathrm{Q}_{i}-\mathrm{V}_{i}^{\prime},
\end{aligned}
$$

ce qui donne

$$
\mathbf{A} \mathbf{P}_{1+1}=\mathbf{P}_{i}+(\alpha-i) \mathbf{A}^{\prime} \mathbf{V}_{i}-\mathbf{A} \mathbf{V}_{i}^{\prime} .
$$

Or on peut écrire cette relation de la manière suivante :

$$
\frac{\mathbf{P}_{i}}{\mathbf{A}^{x-i+1}}-\frac{\mathbf{P}_{i+1}}{\mathbf{A}^{x-1}}=\left(\frac{\mathbf{V}_{i}}{\mathbf{A}^{\alpha-1}}\right)^{\prime}
$$

En supposant ensuite $i=0,1,2, \ldots, \alpha-1$ et ajoutant membre à membre, nous en conclurons

$$
\frac{P}{A^{a+1}}-\frac{P_{x}}{A}=\left(\frac{V_{1}}{A^{x}}+\frac{V_{1}}{A^{x-1}}+\cdots+\frac{V_{2-1}}{A}\right)^{\prime}
$$

ce qui fait bien voir qu'on satisfait à la condition proposée

$$
\begin{array}{lc}
& \frac{\mathbf{P}}{\mathbf{A}^{c+1}}=\frac{U}{A}+\left(\frac{V}{A^{\alpha}}\right)^{\prime} \\
\text { par les valeurs } \\
& V=V_{1}+\mathbf{A} V_{1}+A^{3} V_{2}+\ldots+A^{c-1} V_{n-1}, \\
& U=P_{n},
\end{array}
$$

comme il s'agissait de le démontrer.

Hermite Reduction (1872)

$$
E A-\alpha F A^{\prime}=P \Longrightarrow \int \frac{P}{A^{\alpha+1}}=\frac{F}{A^{\alpha}}+\int \frac{E+F^{\prime}}{A^{\alpha}}
$$

Cela posé, l'intégrale $\int \frac{\mathrm{P} d x}{\mathrm{~A}^{\alpha+1}}$ se traitera comme il suit : nous effectuerons sur A et sa dérivee A^{\prime} les operations du plus grand commun diviseur, de manière à obtenir deux polynomes G et H, satisfaisant à la condition

$$
\mathrm{AG}-\mathrm{A}^{\prime} \mathrm{H}=1
$$

Nous formerons ensute deux sermes de tonctions entueres:

$$
\begin{aligned}
& \mathrm{V}_{s}, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{2-1}, \\
& \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{k},
\end{aligned}
$$

par ces relations, où les polynòmes Q, Q_{4}, Q_{3}, \ldots sont entièrement arbitraires, savoir :

$$
\begin{aligned}
& \alpha V,=H P-A Q, \\
& (\alpha-1) V_{1}=H P_{1}-\Delta Q_{1}, \\
& (\alpha-2) V_{2}=H P_{1}-A Q_{1} \text {, } \\
& \mathbf{V}_{a-1}=H P_{x-1}-\Delta Q_{n+1} \\
& P_{1}=G P-A^{\prime} 0-V^{\prime}{ }^{\prime} \text {, } \\
& \mathbf{P}_{\mathbf{s}}=G \mathrm{P}_{1}-\mathrm{A}^{\prime} \mathbf{Q}_{1}-\mathrm{V}_{\mathbf{\prime}}^{\prime} \\
& \mathrm{P}_{*}=\mathrm{GP}_{\alpha-1}-\mathrm{A}^{\prime} \mathrm{Q}_{\alpha-1}-\mathrm{Y}_{\alpha-1}^{\prime} .
\end{aligned}
$$

Maintenant je prouverai qu'en faisant

$$
\begin{aligned}
& \mathrm{V}=\mathrm{V}_{0}+\mathrm{A} \mathrm{~V}_{1}+\mathrm{A}^{:} \mathrm{V}_{z}+\ldots+\mathrm{A}^{0-1} \mathrm{~V}_{\mathrm{e}-\mathrm{t}}, \\
& \mathrm{U}=\mathrm{P}_{\mathrm{a}}
\end{aligned}
$$

on a l'égalité

$$
\frac{\mathrm{P}}{\mathrm{~A}^{*+1}}=\frac{\mathrm{U}}{\mathrm{~A}}+\left(\frac{\mathrm{V}}{\mathrm{~A}^{\alpha}}\right)^{\prime}
$$

$$
\int \frac{\mathrm{P} d x}{\mathrm{~A}^{x+1}}=\int \frac{\mathrm{U} d x}{\mathrm{~A}}+\frac{\mathrm{V}}{\mathrm{~A}^{2}},
$$

de sorte que $\frac{Y}{\Lambda^{6}}$ est la partie algébrique de l'intégrale proposée, et $\int \frac{\mathrm{U} d x}{\boldsymbol{A}}$ la partie transcendante.
A cet effet, j'elimine G et H entre les trois egalités

$$
\begin{aligned}
\mathrm{A} \mathbf{G}-\mathrm{A}^{\prime} \mathbf{H} & =\mathbf{1}, \\
(\alpha-i) \mathrm{V}_{i} & =\mathbf{H P} P_{i}-\mathbf{A} \mathbf{Q}_{i} \\
\mathrm{P}_{i+1} & =\mathbf{G P}_{i}-\mathrm{A}^{\prime} \mathrm{Q}_{i}-\mathrm{V}_{i}^{\prime},
\end{aligned}
$$

ce qui donne

$$
\mathbf{A} \mathbf{P}_{i+1}=\mathbf{P}_{i}+(\alpha-i) \mathbf{A}^{\prime} \mathbf{V}_{i}-\mathbf{A} \mathbf{V}_{i}^{\prime}
$$

Or on peut écrire cette relation de la manière suivante:

$$
\frac{\mathbf{P}_{i}}{\mathbf{A}^{x-i+1}}-\frac{\mathrm{P}_{i+1}}{\mathbf{\Lambda}^{x+1}}=\left(\frac{\mathrm{V}_{i}}{\mathbf{\Lambda}^{\alpha-1}}\right)^{\prime}
$$

En supposant ensuite $i=0,1,2, \ldots, \alpha-1$ et ajoutant membre a membre, nous en conclurons

$$
\frac{P}{A^{a+1}}-\frac{P_{x}}{A}=\left(\frac{V_{1}}{A^{x}}+\frac{V_{1}}{A^{x-1}}+\cdots+\frac{V_{2-1}}{A}\right)^{\prime}
$$

ce qui fait bien voir qu'on satisfait à la condition proposée

$$
\begin{array}{lc}
& \frac{\mathbf{P}}{\mathbf{A}^{\alpha+1}}=\frac{U}{A}+\left(\frac{V}{A^{\alpha}}\right)^{\prime} \\
\text { par les valeurs } \\
& V=V_{1}+A V_{1}+A^{3} V_{2}+\ldots+A^{c-1} V_{n-1}, \\
& U=P_{n},
\end{array}
$$

comme il s'agissait de le démontrer.

See also (Ostrogradsky, 1838, 1845).

Linear Differential Equations as a Data Structure

Def: differentially finite functions (a.k.a. D-finite)
A function $f(x)$ is D-finite if its derivatives $f(x), f^{\prime}(x), f^{\prime \prime}(x), \ldots$, span a finite-dimensional vector space over $\mathbb{C}(x)$.

Linear Differential Equations as a Data Structure

Def: multivariate D-finite functions
A function $f(x, y, z)$ is D-finite iff its derivatives $\frac{\partial^{i+j+k} f}{\partial_{x}^{i} \partial_{y} \partial_{z}^{k}}(x, y, z)$, $i, j, k \geq 0$, span a finite-dimensional vector space over $\mathbb{C}(x, y, z)$.

Linear Differential Equations as a Data Structure

Def: multivariate ∂-finite functions
A function $f_{n, m}(x, y, z)$ is ∂-finite iff a similar confinement holds for derivatives, shifts, etc.

Symbolic Integration: Indefinite vs Definite

Risch's algorithm (1968)

(Bronstein, 1997)

$$
\int \ln (1-\exp (1-\sqrt{\ln x-x}))=? \quad \int_{0}^{\infty} x \exp \left(-x^{2} / p\right) J_{n}(x) d x=?
$$

Zeilberger's algorithm (1991)

(Petkovšek, Wilf, Zeilberger, 1996)
(1) Motivation
(2) Creative telescoping and Chyzak's algorithm for D-finite functions
(Chyzak, 2000)
(3) Hermite reduction and the definite integration of rational functions
(Bostan, Chen, Chyzak, Li, 2010)
(4) Generalized Hermite reduction and the definite integration of D-finite functions
(Bostan, Chyzak, Lairez, Salvy, 2018)
(5) Conclusion

Sums and Integrals (1/7)

Binomial sums and variations

$$
\begin{aligned}
& \sum_{i=0}^{n} \sum_{j=0}^{n}\binom{i+j}{i}^{2}\binom{4 n-2 i-2 j}{2 n-2 i}=(2 n+1)\binom{2 n}{n}^{2} \quad \text { (Blodgelt, 1990) } \\
& \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} \sum_{j=0}^{k}\binom{k}{j}^{3}
\end{aligned}
$$

No explicit form, but a 2nd-order linear recurrence (Apéry, 1979):

$$
\sum_{m=1}^{n} \frac{1}{m^{3}}+\sum_{m=1}^{k} \frac{(-1)^{m-1}}{2 m^{3}\binom{n}{m}\binom{n+m}{m}}
$$

Sums and Integrals (2/7)

Integrals of the theory of special functions
Four types of Bessel functions (Glasser \& Montaldi, 1994):

$$
\int_{0}^{+\infty} x J_{1}(a x) I_{1}(a x) Y_{0}(x) K_{0}(x) d x=-\frac{\ln \left(1-a^{4}\right)}{2 \pi a^{2}}
$$

No explicit form, but a 2 nd-order linear ODE:

$$
\int_{0}^{\infty} \int_{0}^{\infty} J_{1}(x) J_{1}(y) J_{2}(c \sqrt{x y}) \frac{d x d y}{e^{x+y}}
$$

Sums and Integrals (3/7)

Extractions of coefficients

Theory of orthogonal polynomials, here, Hermite (Doetsch, 1930):

$$
\frac{1}{2 \pi i} \oint \frac{\left(1+2 x y+4 y^{2}\right) \exp \left(\frac{4 x^{2} y^{2}}{1+4 y^{2}}\right)}{y^{n+1}\left(1+4 y^{2}\right)^{\frac{3}{2}}} d y=\frac{H_{n}(x)}{\lfloor n / 2\rfloor!}
$$

Scalar products involving orthogonal/parametrised families
Chebyshev polynomials, Bessel functions, modified Bessel functions:

$$
\begin{gathered}
\int_{-1}^{+1} \frac{e^{-p x} T_{n}(x)}{\sqrt{1-x^{2}}} d x=(-1)^{n} \pi I_{n}(p) \\
\int_{0}^{+\infty} x e^{-p x^{2}} J_{n}(b x) I_{n}(c x) d x=\frac{1}{2 p} \exp \left(\frac{c^{2}-b^{2}}{4 p}\right) J_{n}\left(\frac{b c}{2 p}\right)
\end{gathered}
$$

Sums and Integrals (4/7)

Diagonals in combinatorics

Generating function of diagonal 3D positive rook walks (Bostan, Chyzak, van Hoeij, Pech, 2011):

$$
\begin{aligned}
& \operatorname{Diag} f=\frac{1}{(2 i \pi)^{2}} \oint \oint \frac{f(s, t / s, x / t)}{s t} d s d t= \\
& \quad 1+6 \cdot \int_{0}^{x} \frac{2 F_{1}\left(\begin{array}{c}
1 / 3,2 / 3 \\
2
\end{array} \frac{27 w(2-3 w)}{(1-4 w)^{3}}\right)}{(1-4 w)(1-64 w)} d w \\
& \text { where } \quad f(s, t, u)=\frac{(1-s)(1-t)(1-u)}{1-2(s+t+u)+3(s t+t u+u s)-4 s t u}
\end{aligned}
$$

Sums and Integrals (5/7)

q-Sums, e.g., from the theory of combinatorial partitions

Finite forms of the Rogers-Ramanujan identities and a generalisation: setting $(q ; q)_{n}=(1-q) \cdots\left(1-q^{n}\right)$,

$$
\begin{aligned}
& \sum_{k=0}^{n} \frac{q^{k^{2}}}{(q ; q)_{k}(q ; q)_{n-k}}=\sum_{k=-n}^{n} \frac{(-1)^{k} q^{\left(5 k^{2}-k\right) / 2}}{(q ; q)_{n-k}(q ; q)_{n+k}} \quad \text { (Andrews, 1974) } \\
& \sum_{j=0}^{n} \sum_{i=0}^{n-j} \frac{q^{(i+j)^{2}+j^{2}}}{(q ; q)_{n-i-j}(q ; q)_{i}(q ; q)_{j}}=\sum_{k=-n}^{n} \frac{(-1)^{k} q^{7 / 2 k^{2}+1 / 2 k}}{(q ; q)_{n+k}(q ; q)_{n-k}} \quad \text { (Paule, 1985) }
\end{aligned}
$$

Scalar products in algebraic combinatorics

For $p_{1}=x_{1}+x_{2}+\cdots$ and $p_{2}=x_{1}^{2}+x_{2}^{2}+\cdots$:

$$
\left\langle\exp \left(\left(p_{1}^{2}-p_{2}\right) / 2-p_{2}^{2} / 4\right) \mid \exp \left(t\left(p_{1}^{2}+p_{2}\right) / 2\right)\right\rangle=\frac{e^{-\frac{1}{4} t(t+2)}}{\sqrt{1-t}}
$$

Sums and Integrals (6/7)

Combinatorial identities

In the graph-counting sequence k^{k-1} :

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k} i(k+i)^{k-1}(n-k+j)^{n-k}=(n+i+j)^{n} \tag{Abel}
\end{equation*}
$$

In Stirling numbers of the second kind (partitions) and Eulerian numbers (ascents in permutations):

$$
\sum_{k=0}^{n}(-1)^{m-k} k!\binom{n-k}{m-k}\left\{\begin{array}{l}
n+1 \\
k+1
\end{array}\right\}=\left\langle\begin{array}{l}
n \\
m
\end{array}\right\rangle
$$

(Frobenius)

In Bernoulli numbers (Taylor expansion of $\tan (x)$):

$$
\sum_{k=0}^{m}\binom{m}{k} B_{n+k}=(-1)^{m+n} \sum_{k=0}^{n}\binom{n}{k} B_{m+k} \quad(\text { Gessel, 2003 })
$$

Sums and Integrals (7/7)

Identities in more special functions (related, e.g., to number theory)
In Hurwitz's zeta function and the beta function:

$$
\int_{0}^{\infty} x^{k-1} \zeta(n, \alpha+\beta x) d x=\beta^{-k} B(k, n-k) \zeta(n-k, \alpha)
$$

In the polylogarithm functions:

$$
\int_{0}^{\infty} x^{\alpha-1} \operatorname{Li}_{n}(-x y) d x=\frac{\pi(-\alpha)^{n} y^{-\alpha}}{\sin (\alpha \pi)}
$$

In the (upper) incomplete Gamma function:

$$
\int_{0}^{\infty} x^{s-1} \exp (x y) \Gamma(a, x y) d x=\frac{\pi y^{-s}}{\sin ((a+s) \pi)} \frac{\Gamma(s)}{\Gamma(1-a)}
$$

+a lot more in

or in web sites, like Victor Moll's web site on GR

Creative Telescoping for Sums and Integrals

$$
U_{n}=\sum_{k=a}^{b} u_{n, k}=?
$$

Given a relation $a_{r}(n) u_{n+r, k}+\cdots+a_{0}(n) u_{n, k}=v_{n, k+1}-v_{n, k}$, summation leads by "telescoping" to

$$
a_{r}(n) U_{n+r}+\cdots+a_{0}(n) U_{n}=v_{n, b+1}-v_{n, a} \stackrel{\text { often }}{=} 0
$$

$$
U(t)=\int_{a}^{b} u(t, x) d x=?
$$

Given a relation $a_{r}(t) \frac{\partial^{r} u}{\partial t^{r}}+\cdots+a_{0}(t) u=\frac{\partial}{\partial x} v(t, x)$, integrating leads by "telescoping" to

$$
a_{r}(t) \frac{\partial^{r} U}{\partial t^{r}}+\cdots+a_{0}(t) U=v(t, b)-v(t, a) \stackrel{\text { often }}{=} 0
$$

Adapts easily to $U(t)=\sum_{k=a}^{b} u_{k}(t), U_{n}=\int_{a}^{b} u_{n}(x) d x$, etc.

Creative Telescoping for Sums and Integrals

$$
U_{n}=\sum_{k=a}^{b} u_{n, k}=?
$$

Given a relation $a_{r}(n) u_{n+r, k}+\cdots+a_{0}(n) u_{n, k}=v_{n, k+1}-v_{n, k}$, summation leads by "telescoping" to

$$
a_{r}(n) U_{n+r}+\cdots+a_{0}(n) U_{n}=v_{n, b+1}-v_{n, a} \stackrel{\text { often }}{=} 0
$$

$$
U(t)=\int_{a}^{b} u(t, x) d x=?
$$

Given a relation $a_{r}(t) \frac{\partial^{r} u}{\partial t^{r}}+\cdots+a_{0}(t) u=\frac{\partial}{\partial x} v(t, x)$, integrating leads by "telescoping" to

$$
a_{r}(t) \frac{\partial^{r} U}{\partial t^{r}}+\cdots+a_{0}(t) U=v(t, b)-v(t, a) \stackrel{\text { often }}{=} 0
$$

Telescoper

History of Algorithms for Creative Telescoping

Algorithmic Literature

Fasenmyer (1947, 1949); Rainville (1960); Verbaeten (1974); Gosper (1978); Lipshitz (1988); Zeilberger (1982, 1990, 1991); Takayama (1990); Almkvist, Zeilberger (1990); Wilf, Zeilberger (1992); Hornegger (1992); Koornwinder (1993); Paule, Schorn (1995); Majewicz (1996); Riese (1996); Petkovšek, Wilf, Zeilberger (1996); Paule, Riese (1997); Wegschaider (1997); Chyzak, Salvy (1998); Sturmfels, Takayama (1998); Chyzak (2000); Saito, Sturmfels, Takayama (2000); Oaku, Takayama (2001); Le (2001); Riese (2001); Tefera (2000, 2002); Riese (2003); Apagodu, Zeilberger (2006); Kauers (2007); Chen W.Y.C., Sun (2009); Chyzak, Kauers, Salvy (2009); Koutschan (2010); Bostan, Chen S., Chyzak, Li (2010); Chen S., Kauers, Singer (2012); Bostan, Lairez, Salvy (2013); Bostan, Chen S., Chyzak, Li, Xin (2013); Chen S., Huang, Kauers, Li (2015); Lairez (2016); Chen S., Kauers, Koutschan (2016); Huang (2016); Bostan, Dumont, Salvy (2016); Hoeven (2017); Chen S., Hoeij, Kauers, Koutschan (2018); Bostan, Chyzak, Lairez, Salvy (2018).

Applicable to

first-order vs higher-order equations; shift vs differential vs q-analogues vs mixed; ∂-finite vs non- ∂-finite; w / vs wo/ certificate.

Approaches

- bound denominators + bound degrees + linear algebra
- bound denominators + solve functional equations
- elimination by skew Gröbner bases/skew resultants
- reduction of singularity order + linear algebra

History of Algorithms for Creative Telescoping

Algorithmic Literature

Fasenmyer (1947, 1949); Rainville (1960); Verbaeten (1974); Gosper (1978); Lipshitz (1988); Zeilberger (1982, 1990, 1991); Takayama (1990); Almkvist, Zeilberger (1990); Wilf, Zeilberger (1992); Hornegger (1992); Koornwinder (1993); Paule, Schorn (1995); Majewicz (1996); Riese (1996); Petkovšek, Wilf, Zeilberger (1996); Paule, Riese (1997); Wegschaider (1997); Chyzak, Salvy (1998); Sturmfels, Takayama (1998); Chyzak (2000); Saito, Sturmfels, Takayama (2000); Oaku, Takayama (2001); Le (2001); Riese (2001); Tefera (2000, 2002); Riese (2003); Apagodu, Zeilberger (2006); Kauers (2007); Chen W.Y.C., Sun (2009); Chyzak, Kauers, Salvy (2009); Koutschan (2010); Bostan, Chen S., Chyzak, Li (2010); Chen S., Kauers, Singer (2012); Bostan, Lairez, Salvy (2013); Bostan, Chen S., Chyzak, Li, Xin (2013); Chen S., Huang, Kauers, Li (2015); Lairez (2016); Chen S., Kauers, Koutschan (2016); Huang (2016); Bostan, Dumont, Salvy (2016); Hoeven (2017); Chen S., Hoeij, Kauers, Koutschan (2018); Bostan, Chyzak, Lairez, Salvy (2018).

Applicable to

first-order vs higher-order equations; shift vs differential vs q-analogues vs mixed; ∂-finite vs non- ∂-finite; w / vs wo/ certificate.

Approaches

- bound denominators + bound degrees + linear algebra
- bound denominators + solve functional equations
- elimination by skew Gröbner bases/skew resultants
- reduction of singularity order + linear algebra

History of Algorithms for Creative Telescoping

Algorithmic Literature

Fasenmyer (1947, 1949); Rainville (1960); Verbaeten (1974); Gosper (1978); Lipshitz (1988); Zeilberger (1982, 1990, 1991); Takayama (1990); Almkvist, Zeilberger (1990); Wilf, Zeilberger (1992); Hornegger (1992); Koornwinder (1993); Paule, Schorn (1995); Majewicz (1996); Riese (1996); Petkovšek, Wilf, Zeilberger (1996); Paule, Riese (1997); Wegschaider (1997); Chyzak, Salvy (1998); Sturmfels, Takayama (1998); Chyzak (2000); Saito, Sturmfels, Takayama (2000); Oaku, Takayama (2001); Le (2001); Riese (2001); Tefera (2000, 2002); Riese (2003); Apagodu, Zeilberger (2006); Kauers (2007); Chen W.Y.C., Sun (2009); Chyzak, Kauers, Salvy (2009); Koutschan (2010); Bostan, Chen S., Chyzak, Li (2010); Chen S., Kauers, Singer (2012); Bostan, Lairez, Salvy (2013); Bostan, Chen S., Chyzak, Li, Xin (2013); Chen S., Huang, Kauers, Li (2015); Lairez (2016); Chen S., Kauers, Koutschan (2016); Huang (2016); Bostan, Dumont, Salvy (2016); Hoeven (2017); Chen S., Hoeij, Kauers, Koutschan (2018); Bostan, Chyzak, Lairez, Salvy (2018).

Applicable to

first-order vs higher-order equations; shift vs differential vs q-analogues vs mixed; ∂-finite vs non- ∂-finite; $w /$ vs wo/ certificate.

Approaches

- bound denominators + bound degrees + linear algebra
- bound denominators + solve functional equations
- elimination by skew Gröbner bases/skew resultants
- reduction of singularity order + linear algebra

Running Example

Problem

$$
\begin{aligned}
& \text { Integrate } f(n, p, x)=\frac{\exp (-p x) T_{n}(x)}{\sqrt{1-x^{2}}} \text { w.r.t. } x \text { and prove the identity } \\
& \qquad F(n, p):=\int_{-1}^{+1} f(n, p, x) d x=(-1)^{n} \pi I_{n}(p)
\end{aligned}
$$

Running Example

Problem

Integrate $f(n, p, x)=\frac{\exp (-p x) T_{n}(x)}{\sqrt{1-x^{2}}}$ w.r.t. x and prove the identity

$$
F(n, p):=\int_{-1}^{+1} f(n, p, x) d x=(-1)^{n} \pi I_{n}(p) .
$$

Generating LFEs by algorithm for closure under product yields:

$$
\begin{aligned}
& \frac{\partial f}{\partial p}(n, p, x)+x f(n, p, x)=0, \\
& n f(n+1, p, x)+\left(1-x^{2}\right) \frac{\partial f}{\partial x}(n, p, x) \\
& \quad+\left(p\left(1-x^{2}\right)-(n+1) x\right) f(n, p, x)=0, \\
& \left(1-x^{2}\right) \frac{\partial^{2} f}{\partial_{x}^{2}}(n, p, x)-\left(2 p x^{2}+3 x-2 p\right) \frac{\partial f}{\partial x}(n, p, x) \\
& \\
& -\left(p^{2} x^{2}+3 p x-n^{2}-p^{2}+1\right) f(n, p, x)=0 .
\end{aligned}
$$

Running Example

Problem

$$
\begin{aligned}
& \text { Integrate } f(n, p, x)=\frac{\exp (-p x) T_{n}(x)}{\sqrt{1-x^{2}}} \text { w.r.t. } x \text { and prove the identity } \\
& \qquad F(n, p):=\int_{-1}^{+1} f(n, p, x) d x=(-1)^{n} \pi I_{n}(p)
\end{aligned}
$$

Compact notation using $f_{n}=f(n+1, p, x), f_{x}=\frac{\partial f}{\partial x}(n, p, x)$, etc:

$$
\begin{gathered}
f_{p}+x f=0 \\
n f_{n}+\left(1-x^{2}\right) f_{x}+\left(p\left(1-x^{2}\right)-(n+1) x\right) f=0 \\
\left(1-x^{2}\right) f_{x x}-\left(2 p x^{2}+3 x-2 p\right) f_{x}-\left(p^{2} x^{2}+3 p x-n^{2}-p^{2}+1\right) f=0
\end{gathered}
$$

Running Example

Problem

$$
\begin{gathered}
\text { Integrate } f(n, p, x)=\frac{\exp (-p x) T_{n}(x)}{\sqrt{1-x^{2}}} \text { w.r.t. } x \text { and prove the identity } \\
\qquad F(n, p):=\int_{-1}^{+1} f(n, p, x) d x=(-1)^{n} \pi I_{n}(p)
\end{gathered}
$$

Compact notation using $f_{n}=f(n+1, p, x), f_{x}=\frac{\partial f}{\partial x}(n, p, x)$, etc:

$$
\begin{gathered}
f_{p}+x f=0 \\
n f_{n}+\left(1-x^{2}\right) f_{x}+\left(p\left(1-x^{2}\right)-(n+1) x\right) f=0, \\
\left(1-x^{2}\right) f_{x x}-\left(2 p x^{2}+3 x-2 p\right) f_{x}-\left(p^{2} x^{2}+3 p x-n^{2}-p^{2}+1\right) f=0 .
\end{gathered}
$$

Observe: any $f_{n^{u} p^{v} x^{z w}}$ is a $\mathbf{Q}(n, p, x)$-linear combination of f_{x} and f.

Running Example

Problem

Integrate $f(n, p, x)=\frac{\exp (-p x) T_{n}(x)}{\sqrt{1-x^{2}}}$ w.r.t. x and prove the identity

$$
F(n, p):=\int_{-1}^{+1} f(n, p, x) d x=(-1)^{n} \pi I_{n}(p) .
$$

Compact notation using $f_{n}=f(n+1, p, x), f_{x}=\frac{\partial f}{\partial x}(n, p, x)$, etc:

$$
\begin{gathered}
f_{p}+x f=0 \\
n f_{n}+\left(1-x^{2}\right) f_{x}+\left(p\left(1-x^{2}\right)-(n+1) x\right) f=0, \\
\left(1-x^{2}\right) f_{x x}-\left(2 p x^{2}+3 x-2 p\right) f_{x}-\left(p^{2} x^{2}+3 p x-n^{2}-p^{2}+1\right) f=0 .
\end{gathered}
$$

Goal: Find a telescoper such that there is a certificate

$$
\sum_{u, v} c_{u, v}(n, p) f_{n^{u} p^{v}}=g_{x} \quad \text { for } \quad g=b(n, p, x) f_{x}+a(n, p, x) f .
$$

Chyzak's Algorithm (2000): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
f_{p}=(\ldots) f_{x}+(\ldots) f \\
f_{n}=(\ldots) f_{x}+(\ldots) f \\
f_{x x}=(\ldots) f_{x}+(\ldots) f
\end{gathered}
$$

For $r=1,2, \ldots$ until a nonzero equation can be found, solve:

$$
\sum_{u+v \leq r} c_{u, v}(n, p) f_{n^{u} p^{v}}=\frac{\partial}{\partial x}\left(b(n, p, x) f_{x}+a(n, p, x) f\right)
$$

Chyzak's Algorithm (2000): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
f_{p}=(\ldots) f_{x}+(\ldots) f \\
f_{n}=(\ldots) f_{x}+(\ldots) f \\
f_{x x}=(\ldots) f_{x}+(\ldots) f
\end{gathered}
$$

For $r=1,2, \ldots$ until a nonzero equation can be found, solve:

$$
\sum_{u+v \leq r}(\ldots) c_{u, v}(n, p) f_{x}+(\ldots) c_{u, v}(n, p) f=\frac{\partial}{\partial x}\left(b(n, p, x) f_{x}+a(n, p, x) f\right)
$$

Chyzak's Algorithm (2000): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
f_{p}=(\ldots) f_{x}+(\ldots) f \\
f_{n}=(\ldots) f_{x}+(\ldots) f \\
f_{x x}=(\ldots) f_{x}+(\ldots) f
\end{gathered}
$$

For $r=1,2, \ldots$ until a nonzero equation can be found, solve:
$\sum_{u+v \leq r}(\ldots) c_{u, v} f_{x}+(\ldots) c_{u, v} f=\left((\ldots) b+b_{x}+a\right) f_{x}+\left((\ldots) b+a_{x}\right) f$.

Chyzak's Algorithm (2000): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
f_{p}=(\ldots) f_{x}+(\ldots) f \\
f_{n}=(\ldots) f_{x}+(\ldots) f \\
f_{x x}=(\ldots) f_{x}+(\ldots) f
\end{gathered}
$$

For $r=1,2, \ldots$ until a nonzero equation can be found, solve:
$\sum_{u+v \leq r}(\ldots) c_{u, v}=(\ldots) b+b_{x}+a$ and $\sum_{u+v \leq r}(\ldots) c_{u, v}=(\ldots) b+a_{x}$.

Chyzak's Algorithm (2000): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
f_{p}=(\ldots) f_{x}+(\ldots) f, \\
f_{n}=(\ldots) f_{x}+(\ldots) f, \\
f_{x x}=(\ldots) f_{x}+(\ldots) f .
\end{gathered}
$$

For $r=1,2, \ldots$ until a nonzero equation can be found:

- eliminating a yields: $b_{x x}+(\ldots) b_{x}+(\ldots) b=\sum_{u+v \leq r}(\ldots) c_{u, v} ;$
- a variant of Abramov's decision algorithm finds $b \in \mathbb{Q}(n, p, x)$ and the $(\ldots) c_{u, v} \in \mathbb{Q}(n, p)$; substituting next gives a.

Chyzak's Algorithm (2000): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
f_{p}=(\ldots) f_{x}+(\ldots) f \\
f_{n}=(\ldots) f_{x}+(\ldots) f \\
f_{x x}=(\ldots) f_{x}+(\ldots) f
\end{gathered}
$$

For the running example, the algorithm stops at $r=2$ and outputs:

$$
\begin{aligned}
& p f_{p}+p f_{n}-n f=g_{x} \text { for } n g=\left(1-x^{2}\right) f_{x}+\left(p\left(1-x^{2}\right)-x\right) f \\
& p f_{n n}-2(n+1) f_{n}-p f=g_{x} \text { for } \\
& \quad n g=2 x\left(1-x^{2}\right) f_{x}+2\left((p x+n)\left(1-x^{2}\right)-x^{2}\right) f .
\end{aligned}
$$

Chyzak's Algorithm (2000): an Example

Upon integrating and using properties of $T_{n}(\pm 1)$:

$$
\begin{aligned}
p F_{p}+p F_{n}-n F & =[g]_{x=-1}^{x=+1}=0, \\
p F_{n n}-2(n+1) F_{n}-p F & =[g]_{x=-1}^{x=+1}=0 .
\end{aligned}
$$

One recognizes the equations for the right-hand side.

```
[chyzak@slowfox (16:08:44) ~]$ maple -b Mgfun.mla -B
    \\^/| Maple 2018 (X86 64 LINUX)
    ._I\| |/I_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2018
    MAPLE / All rights reserved. Maple is a trademark of
    <__-_ _-__> Waterloo Maple Inc.
    Type ? for help.
> with(Mgfun);
[MG_Internals, creative_telescoping, dfinite_expr_to_diffeq,
    dfinite_expr_to_rec, dfinite_expr_to_sys, diag_of_sys, int_of_sys,
    pol_to_sys, rational_creative_telescoping, sum_of_sys, sys*sys, sys+sys]
> f := ChebyshevT( }\textrm{n},\textrm{x})/\operatorname{sqrt}(1-\mp@subsup{x}{}{\wedge}2)*\operatorname{exp}(-p*x)
                                    ChebyshevT(n, x) exp(-p x)
    f := -----------------------
```

> ct := creative_telescoping(f, n::shift, p::diff, x::diff);
memory used $=30.3 \mathrm{MB}$, alloc $=78.3 \mathrm{MB}$, time $=0.37$

$\left.x \quad f^{f}(n, p, x)-\quad f(n+1, p, x)\right],[$

$\left.\left.-2 x _f(n+1, p, x)+2 _f(n, p, x)\right]\right]$

Chyzak's Algorithm: Three Issues

(1) The telescoper (wanted output) is a by-product of the certificate, which is obtained in dense, expanded form (likely to be unneeded in further calculations).
(2) In dense, expanded form, the certificate is intrinsically large.
(3) The rational-solving step is sensitive to r, allowing for little reuse of intermediate calculations.

Chyzak's Algorithm: Three Issues

(1) The telescoper (wanted output) is a by-product of the certificate, which is obtained in dense, expanded form (likely to be unneeded in further calculations).
(2) In dense, expanded form, the certificate is intrinsically large.
(3) The rational-solving step is sensitive to r, allowing for little reuse of intermediate calculations.

Example (walks in \mathbb{N}^{2} using $\nwarrow, \leftarrow, \downarrow, \rightarrow, \nearrow$, counted by length):

$$
\begin{gathered}
\oint \oint \frac{-(1+x)\left(1+x^{2}-x y^{2}\right)}{\left(1+x^{2}\right)(1-y)\left(t-x y+t y+t x^{2}+t x^{2} y+t x y^{2}\right)} d x d y \\
\left(16312320 t^{20}+\cdots\right) f_{t^{5}}+\left(407808000 t^{19}+\cdots\right) f_{t^{4}}+\ldots=\frac{\partial g}{\partial_{x}}+\frac{\partial h}{\partial_{y}} \\
\text { LHS }=2 \mathrm{kB}, \quad g=33 \mathrm{kB}, \quad h=896 \mathrm{kB}
\end{gathered}
$$

(1) Motivation
(2) Creative telescoping and Chyzak's algorithm for D-finite functions
(Chyzak, 2000)
(3) Hermite reduction and the definite integration of rational functions
(Bostan, Chen, Chyzak, Li, 2010)
(4) Generalized Hermite reduction and the definite integration of D-finite functions
(Bostan, Chyzak, Lairez, Salvy, 2018)
(5) Conclusion

Rational Integration: the Classics

Hermite reduction

Given P / Q, Hermite reduction finds polynomials A and a such that

$$
\int \frac{P(x)}{Q(x)} d x=\frac{A(x)}{Q^{-}(x)}+\int \frac{a(x)}{Q^{*}(x)} d x
$$

where $Q^{*}(x)$ is the squarefree part of $Q(x), Q(x)=Q^{-}(x) Q^{*}(x)$, and $\operatorname{deg} a<\operatorname{deg} Q^{*}$.

Squarefree factorization

Given Q monic, one can in good complexity compute m and 2-by-2 coprime monic Q_{i} satisfying

$$
Q=Q_{1}^{1} Q_{2}^{2} \ldots Q_{m}^{m}, \quad Q^{-}=Q_{2}^{1} \ldots Q_{m}^{m-1}, \quad Q^{*}=Q_{1} Q_{2} \ldots Q_{m}
$$

Rational Integration: the Classics

Hermite reduction

Given P / Q, Hermite reduction finds polynomials A and a such that

$$
\int \frac{P(x)}{Q(x)} d x=\frac{A(x)}{Q^{-}(x)}+\int \frac{a(x)}{Q^{*}(x)} d x
$$

where $Q^{*}(x)$ is the squarefree part of $Q(x), Q(x)=Q^{-}(x) Q^{*}(x)$, and $\operatorname{deg} a<\operatorname{deg} Q^{*}$.

Logarithmic part = obstruction to existence of rational primitive
For $R(w)=\operatorname{res}_{x}\left(b(x), a(x)-b^{\prime}(x) w\right)$,

$$
\int \frac{a(x)}{b(x)} d x=\sum_{R(c)=0} c \ln \left(\operatorname{gcd}\left(b(x), a(x)-b^{\prime}(x) c\right)\right)
$$

(Trager, 1976).

Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

$$
F(t):=\oint \frac{P(t, x)}{Q(t, x)} d x=? \quad \text { ODE w.r.t. } t ?
$$

Hermite reduction in $K(x)$
Given P / Q, find polynomials A and a with $\operatorname{deg} a<\operatorname{deg} Q^{*}$ such that

$$
\int \frac{P}{Q} d x=\frac{A}{Q^{-}}+\int \frac{a}{Q^{*}} d x
$$

Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

$$
F(t):=\oint \frac{P(t, x)}{Q(t, x)} d x=? \quad \text { ODE w.r.t. } t ?
$$

Hermite reduction in $K(x)$
Given P / Q, find polynomials A and a with $\operatorname{deg} a<\operatorname{deg} Q^{*}$ such that

$$
\frac{P}{Q}=\frac{\partial}{\partial x}\left(\frac{A}{Q^{-}}\right)+\frac{a}{Q^{*}} .
$$

Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

$$
F(t):=\oint \frac{P(t, x)}{Q(t, x)} d x=? \quad \text { ODE w.r.t. } t ?
$$

Bivariate Hermite reduction for creative telescoping in $K(t, x)$

$$
\frac{P}{Q}=\frac{\partial}{\partial x}\left(\frac{A^{(0)}}{Q^{-}}\right)+\frac{a^{(0)}}{Q^{*}} .
$$

Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

$$
F(t):=\oint \frac{P(t, x)}{Q(t, x)} d x=? \quad \text { ODE w.r.t. } t ?
$$

Bivariate Hermite reduction for creative telescoping in $K(t, x)$

$$
\begin{gathered}
\frac{P}{Q}=\frac{\partial}{\partial x}\left(\frac{A^{(0)}}{Q^{-}}\right)+\frac{a^{(0)}}{Q^{*}} . \\
\left(\frac{P}{Q}\right)_{t}=\frac{\partial}{\partial x}\left(\left(\frac{A^{(0)}}{Q^{-}}\right)_{t}\right)+\frac{a_{t}^{(0)}}{Q^{*}}-\frac{a^{(0)} Q_{t}^{*}}{\left(Q^{*}\right)^{2}} .
\end{gathered}
$$

Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

$$
F(t):=\oint \frac{P(t, x)}{Q(t, x)} d x=? \quad \text { ODE w.r.t. } t ?
$$

Bivariate Hermite reduction for creative telescoping in $K(t, x)$

$$
\begin{gathered}
\frac{P}{Q}=\frac{\partial}{\partial x}\left(\frac{A^{(0)}}{Q^{-}}\right)+\frac{a^{(0)}}{Q^{*}} . \\
\left(\frac{P}{Q}\right)_{t}=\frac{\partial}{\partial x}\left(\left(\frac{A^{(0)}}{Q^{-}}\right)_{t}\right)+\frac{a_{t}^{(0)}}{Q^{*}}+\frac{\partial}{\partial x}\left(\frac{B^{(0)}}{Q^{*}}\right)+\frac{b^{(0)}}{Q^{*}} .
\end{gathered}
$$

Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

$$
F(t):=\oint \frac{P(t, x)}{Q(t, x)} d x=? \quad \text { ODE w.r.t. } t ?
$$

Bivariate Hermite reduction for creative telescoping in $K(t, x)$

$$
\begin{gathered}
\frac{P}{Q}=\frac{\partial}{\partial x}\left(\frac{A^{(0)}}{Q^{-}}\right)+\frac{a^{(0)}}{Q^{*}} . \\
\left(\frac{P}{Q}\right)_{t}=\frac{\partial}{\partial x}\left(\left(\frac{A^{(0)}}{Q^{-}}\right)_{t}+\frac{B^{(0)}}{Q^{*}}\right)+\frac{a_{t}^{(0)}+b^{(0)}}{Q^{*}} .
\end{gathered}
$$

Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

$$
F(t):=\oint \frac{P(t, x)}{Q(t, x)} d x=? \quad \text { ODE w.r.t. } t ?
$$

Bivariate Hermite reduction for creative telescoping in $K(t, x)$

$$
\begin{aligned}
& \frac{P}{Q}=\frac{\partial}{\partial x}\left(\frac{A^{(0)}}{Q^{-}}\right)+\frac{a^{(0)}}{Q^{*}} . \\
& \left(\frac{P}{Q}\right)_{t}=\frac{\partial}{\partial x}\left(E^{(1)}\right)+\frac{a^{(1)}}{Q^{*}} .
\end{aligned}
$$

Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

$$
F(t):=\oint \frac{P(t, x)}{Q(t, x)} d x=? \quad \text { ODE w.r.t. } t ?
$$

Bivariate Hermite reduction for creative telescoping in $K(t, x)$

$$
\begin{aligned}
& \frac{P}{Q}=\frac{\partial}{\partial x}\left(\frac{A^{(0)}}{Q^{-}}\right)+\frac{a^{(0)}}{Q^{*}} . \\
& \left(\frac{P}{Q}\right)_{t^{i}}=\frac{\partial}{\partial x}\left(E^{(i)}\right)+\frac{a^{(i)}}{Q^{*}}
\end{aligned}
$$

Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

$$
F(t):=\oint \frac{P(t, x)}{Q(t, x)} d x=? \quad \text { ODE w.r.t. } t ?
$$

Bivariate Hermite reduction for creative telescoping in $K(t, x)$

$$
\begin{aligned}
& \frac{P}{Q}=\frac{\partial}{\partial x}\left(\frac{A^{(0)}}{Q^{-}}\right)+\frac{a^{(0)}}{Q^{*}} . \\
& \left(\frac{P}{Q}\right)_{t^{i}}=\frac{\partial}{\partial x}\left(E^{(i)}\right)+\frac{a^{(i)}}{Q^{*}}
\end{aligned}
$$

- Confinement $\operatorname{deg}_{x} a^{(i)}<d:=\operatorname{deg}_{x} Q^{*} \leq \operatorname{deg}_{x} Q:$

$$
\sum_{i=0}^{d} c_{i}(t) a^{(i)}(t, x)=0 \Longrightarrow \sum_{i=0}^{d} c_{i} F_{t^{i}}=0
$$

- Incremental algorithm that does not compute $(P / Q)_{t}$.
- Degree bounds in $K(t)+$ eval./interpol. \Longrightarrow good complexity.
(1) Motivation
(2) Creative telescoping and Chyzak's algorithm for D-finite functions
(Chyzak, 2000)
(3) Hermite reduction and the definite integration of rational functions
(Bostan, Chen, Chyzak, Li, 2010)

4. Generalized Hermite reduction and the definite integration of D-finite functions
(Bostan, Chyzak, Lairez, Salvy, 2018)
(5) Conclusion

Operator Notation

Algebra of linear differential operators with rational coefficients

$$
\begin{gathered}
\mathbb{A}=K(t, x)\left\langle\partial_{t}, \partial_{x}\right\rangle, \quad M_{f}=\mathbb{A}(f)=\{P(f): P \in \mathbb{A}\} \\
P=\sum p_{i, j}(t, x) \partial_{t}^{i} \partial_{x}^{j} \in \mathbb{A} \Longrightarrow P(f)=\sum p_{i, j}(t, x) f_{t^{i} x j} \in M_{f} \\
S=K(t, x)\left\langle\partial_{x}\right\rangle \subset \mathbb{A}
\end{gathered}
$$

Operator Notation

Algebra of linear differential operators with rational coefficients

$$
\begin{gathered}
\mathbb{A}=K(t, x)\left\langle\partial_{t}, \partial_{x}\right\rangle, \quad M_{f}=\mathbb{A}(f)=\{P(f): P \in \mathbb{A}\} \\
P=\sum p_{i, j}(t, x) \partial_{t}^{i} \partial_{x}^{j} \in \mathbb{A} \Longrightarrow P(f)=\sum p_{i, j}(t, x) f_{t^{i} x j} \in M_{f} \\
\mathrm{~S}=K(t, x)\left\langle\partial_{x}\right\rangle \subset \mathbb{A}
\end{gathered}
$$

Hypotheses of D-finiteness

- f is D-finite w.r.t. $\mathbb{A} \Longrightarrow d:=\operatorname{dim}_{K(t, x)}\left(M_{f}\right)<\infty$.
- Let $h \in M_{f}$ be cyclic, that is to say, $M_{f}=\bigoplus_{i=0}^{d-1} K(t, x) h_{x^{i}}=\mathrm{S}(h)$.
- For all $g \in M_{f}$, there is $A_{g} \in S$ such that $g=A_{g}(h)$.

Operator Notation

Algebra of linear differential operators with rational coefficients

$$
\begin{gathered}
\mathbb{A}=K(t, x)\left\langle\partial_{t}, \partial_{x}\right\rangle, \quad M_{f}=\mathbb{A}(f)=\{P(f): P \in \mathbb{A}\} \\
P=\sum p_{i, j}(t, x) \partial_{t}^{i} \partial_{x}^{j} \in \mathbb{A} \Longrightarrow P(f)=\sum p_{i, j}(t, x) f_{t^{i} x j} \in M_{f} \\
S=K(t, x)\left\langle\partial_{x}\right\rangle \subset \mathbb{A}
\end{gathered}
$$

Hypotheses of D-finiteness

- f is D-finite w.r.t. $\mathbb{A} \Longrightarrow d:=\operatorname{dim}_{K(t, x)}\left(M_{f}\right)<\infty$.
- Let $h \in M_{f}$ be cyclic, that is to say, $M_{f}=\bigoplus_{i=0}^{d-1} K(t, x) h_{x^{i}}=\mathrm{S}(h)$.
- For all $g \in M_{f}$, there is $A_{g} \in S$ such that $g=A_{g}(h)$.

Interpretation of creative telescoping
Given f, find a telescoper $T \in K(t)\left\langle\partial_{t}\right\rangle$ and a certificate $g \in M_{f}$ such that $T(f)=\partial_{x}(g)$. This really computes $\left(K(t)\left\langle\partial_{t}\right\rangle\right)(f) \cap \partial_{x}\left(M_{f}\right)$.

Lagrange's Identity

Dual of operators

$$
P=\sum_{i=0}^{r} p_{i}(t, x) \partial_{x}^{i} \in \mathrm{~S} \stackrel{*}{\longleftrightarrow} P^{*}=\sum_{i=0}^{r}\left(-\partial_{x}\right)^{i} p_{i}(t, x) \in \mathrm{S}
$$

Lagrange's Identity

Dual of operators

$$
P=\sum_{i=0}^{r} p_{i}(t, x) \partial_{x}^{i} \in \mathrm{~S} \stackrel{*}{\longleftrightarrow} P^{*}=\sum_{i=0}^{r}\left(-\partial_{x}\right)^{i} p_{i}(t, x) \in \mathrm{S}
$$

Lagrange's identity

There is a map \mathcal{L}_{P}, bilinear w.r.t. $\left(h, \ldots, h^{r-1}\right)$ and $\left(u, \ldots, u^{r-1}\right)$, s.t.

$$
\forall u \in K(t, x), \forall h \in M_{f}, u P(h)-P^{*}(u) h=\partial_{x}\left(\mathcal{L}_{P}(h, u)\right) .
$$

Lagrange's Identity

Dual of operators

$$
P=\sum_{i=0}^{r} p_{i}(t, x) \partial_{x}^{i} \in \mathrm{~S} \stackrel{*}{\longleftrightarrow} P^{*}=\sum_{i=0}^{r}\left(-\partial_{x}\right)^{i} p_{i}(t, x) \in \mathrm{S}
$$

Lagrange's identity

There is a map \mathcal{L}_{P}, bilinear w.r.t. $\left(h, \ldots, h^{r-1}\right)$ and $\left(u, \ldots, u^{r-1}\right)$, s.t.

$$
\forall u \in K(t, x), \forall h \in M_{f}, u P(h)-P^{*}(u) h=\partial_{x}\left(\mathcal{L}_{P}(h, u)\right) .
$$

Proof: $\mathcal{L}_{P}(h, u)=\sum_{i=0}^{r} \sum_{j=0}^{i-1}(-1)^{j}\left(p_{i} u\right)_{x j} h_{x^{i-j-1}}$.

Consequences of Lagrange's Identity

Lagrange's identity:

$$
\forall u \in K(t, x), \forall h \in M_{f}, u P(h)-P^{*}(u) h=\partial_{x}\left(\mathcal{L}_{P}(h, u)\right) .
$$

Let h be cyclic and $L \in \mathrm{~S}$ be such that $L(h)=0$. Then, for all $g \in M_{f}$:
Operator to rational function: $\mathbb{A}(f)=\mathrm{S}(h) \rightarrow K(t, x) h$

$$
g \in A_{g}^{*}(1) h+\partial_{x}\left(M_{f}\right)
$$

Consequences of Lagrange's Identity

Lagrange's identity:

$$
\forall u \in K(t, x), \forall h \in M_{f}, u P(h)-P^{*}(u) h=\partial_{x}\left(\mathcal{L}_{P}(h, u)\right) .
$$

Let h be cyclic and $L \in \mathrm{~S}$ be such that $L(h)=0$. Then, for all $g \in M_{f}$:
Operator to rational function: $\mathbb{A}(f)=\mathrm{S}(h) \rightarrow K(t, x) h$

$$
g \in A_{g}^{*}(1) h+\partial_{x}\left(M_{f}\right)
$$

Equivalent rational factors: $K(t, x) h \rightarrow\left(K(t, x) \bmod L^{*}(K(t, x))\right) h$ $\forall q \in K(t, x), g \in\left(A_{g}^{*}(1)-L^{*}(q)\right) h+\partial_{x}\left(M_{f}\right)$.

Consequences of Lagrange's Identity

Lagrange's identity:

$$
\forall u \in K(t, x), \forall h \in M_{f}, u P(h)-P^{*}(u) h=\partial_{x}\left(\mathcal{L}_{P}(h, u)\right) .
$$

Let h be cyclic and $L \in \mathrm{~S}$ be such that $L(h)=0$. Then, for all $g \in M_{f}$:
Operator to rational function: $\mathbb{A}(f)=\mathrm{S}(h) \rightarrow K(t, x) h$

$$
g \in A_{g}^{*}(1) h+\partial_{x}\left(M_{f}\right)
$$

Equivalent rational factors: $K(t, x) h \rightarrow\left(K(t, x) \bmod L^{*}(K(t, x))\right) h$ $\forall q \in K(t, x), g \in\left(A_{g}^{*}(1)-L^{*}(q)\right) h+\partial_{x}\left(M_{f}\right)$.

Testing derivatives (for L of minimal order)

$$
g \in \partial_{x}\left(M_{f}\right) \Leftrightarrow \exists q \in K(t, x), A_{g}^{*}(1)=L^{*}(q) .
$$

Consequences of Lagrange's Identity

Lagrange's identity:

$$
\forall u \in K(t, x), \forall h \in M_{f}, u P(h)-P^{*}(u) h=\partial_{x}\left(\mathcal{L}_{P}(h, u)\right) .
$$

Let h be cyclic and $L \in \mathrm{~S}$ be such that $L(h)=0$. Then, for all $g \in M_{f}$:
Operator to rational function: $\mathbb{A}(f)=\mathrm{S}(h) \rightarrow K(t, x) h$

$$
g \in A_{g}^{*}(1) h+\partial_{x}\left(M_{f}\right)
$$

Equivalent rational factors: $K(t, x) h \rightarrow\left(K(t, x) \bmod L^{*}(K(t, x))\right) h$ $\forall q \in K(t, x), g \in\left(A_{g}^{*}(1)-L^{*}(q)\right) h+\partial_{x}\left(M_{f}\right)$.
[Reduction?]

Testing derivatives (for L of minimal order)

$$
g \in \partial_{x}\left(M_{f}\right) \Leftrightarrow \exists q \in K(t, x), A_{g}^{*}(1)=L^{*}(q) .
$$

[Algorithm?]

Running Example (continued)

Problem

Integrate $f(n, p, x)=\frac{\exp (-p x) T_{n}(x)}{\sqrt{1-x^{2}}}$ w.r.t. x and prove the identity

$$
F(n, p):=\int_{-1}^{+1} f(n, p, x) d x=(-1)^{n} \pi I_{n}(p)
$$

In operator notation, f is cancelled by:

$$
\begin{aligned}
& \partial_{p}+x 1, \quad n \partial_{n}+\left(1-x^{2}\right) \partial_{x}+\left(p\left(1-x^{2}\right)-(n+1) x\right) 1, \\
& \left(1-x^{2}\right) \partial_{x}^{2}-\left(2 p x^{2}+3 x-2 p\right) \partial_{x}-\left(p^{2} x^{2}+3 p x-n^{2}-p^{2}+1\right) 1 .
\end{aligned}
$$

Goal: Find a telescoper such that there is a certificate

$$
\sum_{u, v} c_{u, v}(n, p) \partial_{n}^{u} \partial_{p}^{v}=\partial_{x}\left(b(n, p, x) \partial_{x}+a(n, p, x) 1\right)
$$

Running Example (continued)

Problem

$$
\begin{aligned}
& \text { Integrate } f(n, p, x)=\frac{\exp (-p x) T_{n}(x)}{\sqrt{1-x^{2}}} \text { w.r.t. } x \text { and prove the identity } \\
& \qquad F(n, p):=\int_{-1}^{+1} f(n, p, x) d x=(-1)^{n} \pi I_{n}(p)
\end{aligned}
$$

In operator notation, f is cyclic, so $h:=f$, and it is cancelled by:

$$
\begin{gathered}
\partial_{p}+x 1, \quad n \partial_{n}+\left(1-x^{2}\right) \partial_{x}+\left(p\left(1-x^{2}\right)-(n+1) x\right) 1, \\
L:=\left(1-x^{2}\right) \partial_{x}^{2}-\left(2 p x^{2}+3 x-2 p\right) \partial_{x}-\left(p^{2} x^{2}+3 p x-n^{2}-p^{2}+1\right) 1 .
\end{gathered}
$$

Goal: Find a telescoper such that there is a certificate

$$
\sum_{u, v} c_{u, v}(n, p) \partial_{n}^{u} \partial_{p}^{v}=\partial_{x}\left(b(n, p, x) \partial_{x}+a(n, p, x) 1\right)
$$

Reduction-Based CT Algorithm (2018): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
L_{1}:=\partial_{p}-(\ldots) \partial_{x}-(\ldots) 1 \\
L_{2}:=\partial_{n}-(\ldots) \partial_{x}-(\ldots) 1 \\
L_{3}:=\partial_{x}^{2}-(\ldots) \partial_{x}-(\ldots) 1 \\
L:=L_{3}, \quad I:=\mathbb{A} L_{1}+\mathbb{A} L_{2}+\mathbb{A} L_{3}
\end{gathered}
$$

Reduction-Based CT Algorithm (2018): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
L_{1}:=\partial_{p}-(\ldots) \partial_{x}-(\ldots) 1, \\
L_{2}:=\partial_{n}-(\ldots) \partial_{x}-(\ldots) 1, \\
L_{3}:=\partial_{x}^{2}-(\ldots) \partial_{x}-(\ldots) 1 . \\
L:=L_{3}, \quad I:=\mathbb{A} L_{1}+\mathbb{A} L_{2}+\mathbb{A} L_{3} .
\end{gathered}
$$

For $P=1, \partial_{n}, \partial_{p}, \partial_{n}^{2}, \partial_{n} \partial_{p}, \partial_{p}^{2}$:

- set $g=P(h)$, so that $A_{g}=\operatorname{rem}(P, I)=v(p, n, x) \partial_{x}+u(p, n, x) 1$,

Reduction-Based CT Algorithm (2018): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
L_{1}:=\partial_{p}-(\ldots) \partial_{x}-(\ldots) 1, \\
L_{2}:=\partial_{n}-(\ldots) \partial_{x}-(\ldots) 1, \\
L_{3}:=\partial_{x}^{2}-(\ldots) \partial_{x}-(\ldots) 1 . \\
L:=L_{3}, \quad I:=\mathbb{A} L_{1}+\mathbb{A} L_{2}+\mathbb{A} L_{3} .
\end{gathered}
$$

For $P=1, \partial_{n}, \partial_{p}, \partial_{n}^{2}, \partial_{n} \partial_{p}, \partial_{p}^{2}$:

- set $g=P(h)$, so that $A_{g}=\operatorname{rem}(P, I)=v(p, n, x) \partial_{x}+u(p, n, x) 1$,
- $A_{g}^{*}=-v \partial_{x}+\left(u-v_{x}\right)$, so that $g=\left(u-v_{x}\right) f+\partial_{x}(\ldots)$.

Reduction-Based CT Algorithm (2018): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
L_{1}:=\partial_{p}-(\ldots) \partial_{x}-(\ldots) 1, \\
L_{2}:=\partial_{n}-(\ldots) \partial_{x}-(\ldots) 1, \\
L_{3}:=\partial_{x}^{2}-(\ldots) \partial_{x}-(\ldots) 1 . \\
L:=L_{3}, \quad I:=\mathbb{A} L_{1}+\mathbb{A} L_{2}+\mathbb{A} L_{3} .
\end{gathered}
$$

For $P=1, \partial_{n}, \partial_{p}, \partial_{n}^{2}, \partial_{n} \partial_{p}, \partial_{p}^{2}$:

- set $g=P(h)$, so that $A_{g}=\operatorname{rem}(P, I)=v(p, n, x) \partial_{x}+u(p, n, x) 1$,
- $A_{g}^{*}=-v \partial_{x}+\left(u-v_{x}\right)$, so that $g=\left(u-v_{x}\right) f+\partial_{x}(\ldots)$.

For those $P, u-v_{x} \in K(p, n)[x]$ with degree ≤ 3, while

$$
\begin{aligned}
& L^{*}\left(p^{2} x^{0}\right)=p^{2} x^{2}-p x-\left(n^{2}+p^{2}\right) \\
& L^{*}\left(p^{2} x^{1}\right)=p^{2} x^{3}-3 p x^{2}-\left(n^{2}+p^{2}-1\right) x+2 p
\end{aligned}
$$

Reduction-Based CT Algorithm (2018): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
L_{1}:=\partial_{p}-(\ldots) \partial_{x}-(\ldots) 1, \\
L_{2}:=\partial_{n}-(\ldots) \partial_{x}-(\ldots) 1, \\
L_{3}:=\partial_{x}^{2}-(\ldots) \partial_{x}-(\ldots) 1 . \\
L:=L_{3}, \quad I:=\mathbb{A} L_{1}+\mathbb{A} L_{2}+\mathbb{A} L_{3} .
\end{gathered}
$$

For $P=1, \partial_{n}, \partial_{p}, \partial_{n}^{2}, \partial_{n} \partial_{p}, \partial_{p}^{2}$:

$$
P(f)=\left(u-v_{x}\right) f+\partial_{x}(\ldots)=\left(\mu_{P}(p, n) x^{1}+\lambda_{P}(p, n) x^{0}\right) f+\partial_{x}(\ldots) .
$$

Reduction-Based CT Algorithm (2018): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
L_{1}:=\partial_{p}-(\ldots) \partial_{x}-(\ldots) 1, \\
L_{2}:=\partial_{n}-(\ldots) \partial_{x}-(\ldots) 1, \\
L_{3}:=\partial_{x}^{2}-(\ldots) \partial_{x}-(\ldots) 1 . \\
L:=L_{3}, \quad I:=\mathbb{A} L_{1}+\mathbb{A} L_{2}+\mathbb{A} L_{3} .
\end{gathered}
$$

For $P=1, \partial_{n}, \partial_{p}, \partial_{n}^{2}, \partial_{n} \partial_{p}, \partial_{p}^{2}$:

$$
P(f)=\left(u-v_{x}\right) f+\partial_{x}(\ldots)=\left(\mu_{P}(p, n) x^{1}+\lambda_{P}(p, n) x^{0}\right) f+\partial_{x}(\ldots) .
$$

Linear algebra over $K(p, n)$ finds a basis of telescopers

$$
\left(\sum_{P} c_{P} P\right)(f)=\partial_{x}(\ldots)
$$

Reduction Modulo $L^{*}(K(x))$

Local decomposition of a rational function $R \in K(x)$

$$
R=R_{(\infty)}+\sum_{\alpha} R_{(\alpha)} \text { for some } R_{(\alpha)} \in \frac{1}{x-\alpha} K(\alpha)\left[\frac{1}{x-\alpha}\right] \text { and } R_{(\infty)} \in K[x] .
$$

Reduction Modulo $L^{*}(K(x))$

Local decomposition of a rational function $R \in K(x)$
$R=R_{(\infty)}+\sum_{\alpha} R_{(\alpha)}$ for some $R_{(\alpha)} \in \frac{1}{x-\alpha} K(\alpha)\left[\frac{1}{x-\alpha}\right]$ and $R_{(\infty)} \in K[x]$.

Local study of the action of L^{*}
\exists polynomials I_{α} and I_{∞}, \exists integers σ_{α} and σ_{∞}, such that $\forall s \in \mathbb{Z}$,

$$
\begin{aligned}
L^{*}\left((x-\alpha)^{-s}\right) & =I_{\alpha}(-s)(x-\alpha)^{\sigma_{\alpha}-s}+\mathcal{O}\left((x-\alpha)^{\sigma_{\alpha}-(s-1)}\right) \text { as } x \rightarrow \alpha, \\
L^{*}\left((1 / x)^{-s}\right) & =I_{\infty}(-s)(1 / x)^{\sigma_{\infty}-s}+\mathcal{O}\left((1 / x)^{\sigma_{\infty}-(s-1)}\right) \text { as } x \rightarrow \infty .
\end{aligned}
$$

Reduction Modulo $L^{*}(K(x))$

Local decomposition of a rational function $R \in K(x)$

$$
R=R_{(\infty)}+\sum_{\alpha} R_{(\alpha)} \text { for some } R_{(\alpha)} \in \frac{1}{x-\alpha} K(\alpha)\left[\frac{1}{x-\alpha}\right] \text { and } R_{(\infty)} \in K[x] .
$$

Local study of the action of L^{*}

\exists polynomials I_{α} and I_{∞}, \exists integers σ_{α} and σ_{∞}, such that $\forall s \in \mathbb{Z}$,

$$
\begin{aligned}
L^{*}\left((x-\alpha)^{-s-\sigma_{\alpha}}\right) & =I_{\alpha}\left(-s-\sigma_{\alpha}\right)(x-\alpha)^{-s}+\mathcal{O}\left((x-\alpha)^{-(s-1)}\right) \text { as } x \rightarrow \alpha, \\
L^{*}\left((1 / x)^{-s-\sigma_{\infty}}\right) & =I_{\infty}\left(-s-\sigma_{\infty}\right)(1 / x)^{-s}+\mathcal{O}\left((1 / x)^{-(s-1)}\right) \text { as } x \rightarrow \infty .
\end{aligned}
$$

Reduction Modulo $L^{*}(K(x))$

Local decomposition of a rational function $R \in K(x)$

$$
R=R_{(\infty)}+\sum_{\alpha} R_{(\alpha)} \text { for some } R_{(\alpha)} \in \frac{1}{x-\alpha} K(\alpha)\left[\frac{1}{x-\alpha}\right] \text { and } R_{(\infty)} \in K[x] .
$$

Local study of the action of L^{*}

\exists polynomials I_{α} and I_{∞}, \exists integers σ_{α} and σ_{∞}, such that $\forall s \in \mathbb{Z}$,

$$
\begin{aligned}
(x-\alpha)^{-s} & =I_{\alpha}\left(-s-\sigma_{\alpha}\right)^{-1} L^{*}\left((x-\alpha)^{-s-\sigma_{\alpha}}\right)+\mathcal{O}\left((x-\alpha)^{-(s-1)}\right) \text { as } x \rightarrow \alpha, \\
(1 / x)^{-s} & =I_{\infty}\left(-s-\sigma_{\infty}\right)^{-1} L^{*}\left((1 / x)^{-s-\sigma_{\infty}}\right)+\mathcal{O}\left((1 / x)^{-(s-1)}\right) \text { as } x \rightarrow \infty .
\end{aligned}
$$

Reduction Modulo $L^{*}(K(x))$

Local decomposition of a rational function $R \in K(x)$
$R=R_{(\infty)}+\sum_{\alpha} R_{(\alpha)}$ for some $R_{(\alpha)} \in \frac{1}{x-\alpha} K(\alpha)\left[\frac{1}{x-\alpha}\right]$ and $R_{(\infty)} \in K[x]$.

Local study of the action of L^{*}
\exists polynomials I_{α} and I_{∞}, \exists integers σ_{α} and σ_{∞}, such that $\forall s \in \mathbb{Z}$,

$$
\begin{aligned}
(x-\alpha)^{-s} & =I_{\alpha}\left(-s-\sigma_{\alpha}\right)^{-1} L^{*}\left((x-\alpha)^{-s-\sigma_{\alpha}}\right)+\mathcal{O}\left((x-\alpha)^{-(s-1)}\right) \text { as } x \rightarrow \alpha, \\
(1 / x)^{-s} & =I_{\infty}\left(-s-\sigma_{\infty}\right)^{-1} L^{*}\left((1 / x)^{-s-\sigma_{\infty}}\right)+\mathcal{O}\left((1 / x)^{-(s-1)}\right) \text { as } x \rightarrow \infty .
\end{aligned}
$$

Weak reduction strategy

- reduce at finite α (in any order) before at ∞,
- reduce term of higher valuation first (if possible),
- skip monomials for which $I_{\alpha}\left(-s-\sigma_{\alpha}\right)=0$ or $I_{\infty}\left(-s-\sigma_{\infty}\right)=0$.

Canonical Form Modulo $L^{*}(K(x))$

Problem: $L^{*}(K(x))$ does not reduce to 0
For $c_{0}=I_{\alpha}\left(-s-\sigma_{\alpha}\right)$ and some c_{1}, write
$L^{*}\left((x-\alpha)^{-s-\sigma_{\alpha}}\right)=c_{0}(x-\alpha)^{-s}+c_{1}(x-\alpha)^{-(s-1)}+\mathcal{O}\left((x-\alpha)^{-(s-2)}\right)$.

- If $c_{0} \neq 0$, this reduces to

$$
L^{*}\left((x-\alpha)^{-s-\sigma_{\alpha}}-(x-\alpha)^{-s-\sigma_{\alpha}}\right)=0 .
$$

- If $c_{0}=0$, this reduces to some

$$
L^{*}\left((x-\alpha)^{-s-\sigma_{\alpha}}-\frac{c_{1}}{c_{2}}(x-\alpha)^{-(s-1)-\sigma_{\alpha}}\right),
$$

which is unlikely to further reduce to 0 .

Canonical Form Modulo $L^{*}(K(x))$

Problem: $L^{*}(K(x))$ does not reduce to 0
For $c_{0}=I_{\alpha}\left(-s-\sigma_{\alpha}\right)$ and some c_{1}, write
$L^{*}\left((x-\alpha)^{-s-\sigma_{\alpha}}\right)=c_{0}(x-\alpha)^{-s}+c_{1}(x-\alpha)^{-(s-1)}+\mathcal{O}\left((x-\alpha)^{-(s-2)}\right)$.

- If $c_{0} \neq 0$, this reduces to

$$
L^{*}\left((x-\alpha)^{-s-\sigma_{\alpha}}-(x-\alpha)^{-s-\sigma_{\alpha}}\right)=0 .
$$

- If $c_{0}=0$, this reduces to some

$$
L^{*}\left((x-\alpha)^{-s-\sigma_{\alpha}}-\frac{c_{1}}{c_{2}}(x-\alpha)^{-(s-1)-\sigma_{\alpha}}\right),
$$

which is unlikely to further reduce to 0 .

Solution

- finitely-many potential obstructions, described by the integer zeros of the I_{α} and I_{∞},
- this can be computed, leading to a canonical-form computation.

```
[chyzak@slowfox (04:21:54) ~]$ maple -b Mgfun.mla -B
    \\^/| Maple 2018 (X86 64 LINUX)
    ._I\| I/I_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2018
    MAPLE / All rights reserved. Maple is a trademark of
    <__-_ _-__> Waterloo Maple Inc.
    Type ? for help.
> read "redct.mpl";
> f := ChebyshevT( }\textrm{n},\textrm{x})/\operatorname{sqrt}(1-\mp@subsup{\textrm{x}}{}{\wedge}2)*\operatorname{exp}(-p*x)
                    ChebyshevT(n, x) exp(-p x)
                        f := -----------------------
> redct(Int(f,x=-1..1),[n::shift,p::diff]);
    2
    [pD[n] + pD[p] - n, pD[n] - 2n D[n] - p - 2 D[n]]
> f := 2*BesselJ(m+n, 2*t*x)*ChebyshevT(m-n,x)/sqrt(1-x^2);
    2 BesselJ(m + n, 2 t x) ChebyshevT(m - n, x)
    f := ---------------------
> redct(Int(f,x),[t::diff, n::shift, m::shift]);
memory used=1189.8MB, alloc=144.8MB, time=9.98
    2
[t D[m] + t D[n] + t D[t] - m - n, t D[m] - 2mD[m] + t - 2 D[m],
    2
    t D[n] - 2 n D[n] + t - 2 D[n]]
```

(1) Motivation
(2) Creative telescoping and Chyzak's algorithm for D-finite functions
(Chyzak, 2000)
(3) Hermite reduction and the definite integration of rational functions
(Bostan, Chen, Chyzak, Li, 2010)
(4) Generalized Hermite reduction and the definite integration of D-finite functions
(Bostan, Chyzak, Lairez, Salvy, 2018)
(5) Conclusion

Timings: More than 140 integrals tested

Algorithm	(1)	(2)	(3)	(4)	(5)	(6)	(7)
new (mpl)	13 s	$>1 \mathrm{~h}$	$>1 \mathrm{~h}$	1.5 s	1.5 s	165 s	53 s
Chyzak's (mma)	19 s	253 s	45 s	232 s	516 s	$>1 \mathrm{~h}$	$>1 \mathrm{~h}$
Koutschan's (mma)	1.9 st	2.3 s	5.3 s	$>1 \mathrm{~h}$	$2.3 \mathrm{~s} \dagger$	5.4 s	$2.2 \mathrm{~s} \dagger$

$$
\begin{align*}
& \int \frac{2 J_{m+n}(2 t x) T_{m-n}(x)}{\sqrt{1-x^{2}}} d x \quad[\text { diff. } t, \text { shift } n \text { and } m], \tag{1}\\
& \int_{0}^{1} C_{n}^{(\lambda)}(x) C_{m}^{(\lambda)}(x) C_{\ell}^{(\lambda)}(x)\left(1-x^{2}\right)^{\lambda-\frac{1}{2}} d x \quad[\text { shift } n, m, \ell] \tag{2}\\
& \int_{0}^{\infty} x J_{1}(a x) I_{1}(a x) Y_{0}(x) K_{0}(x) d x \quad[\text { diff. } a], \tag{3}\\
& \int \frac{n^{2}+x+1}{n^{2}+1}\left(\frac{(x+1)^{2}}{(x-4)(x-3)^{2}\left(x^{2}-5\right)^{3}}\right)^{n} \sqrt{x^{2}-5} e^{\frac{x^{3}+1}{x(x-3)(x-4)^{2}}} d x \tag{7}\\
& \int C_{m}^{(\mu)}(x) C_{n}^{(v)}(x)\left(1-x^{2}\right)^{v-1 / 2} d x \quad[\text { shift } n, m, \mu, v] \tag{5}\\
& \int x^{\ell} C_{m}^{(\mu)}(x) C_{n}^{(v)}(x)\left(1-x^{2}\right)^{v-1 / 2} d x \quad[\text { shift } \ell, m, n, \mu, v], \tag{6}\\
& \int(x+a)^{\gamma+\lambda-1}(a-x)^{\beta-1} C_{m}^{(\gamma)}(x / a) C_{n}^{(\lambda)}(x / a) d x \\
& \text { [diff. } a \text {, shift } n, m, \beta, \gamma, \lambda] \text {. }
\end{align*}
$$

[shift n],
(4)
t : Heuristic got these faster answers by looking for telescopers of non-minimal orders, yet smaller sizes.

Timings: More than 140 integrals tested

$$
\begin{align*}
& \int \frac{2 J_{m+n}(2 t x) T_{m-n}(x)}{\sqrt{1-x^{2}}} d x \quad[\text { diff. } t, \text { shift } n \text { and } m], \\
& \text { (1) } \\
& \int_{0}^{1} C_{n}^{(\lambda)}(x) C_{m}^{(\lambda)}(x) C_{\ell}^{(\lambda)}(x)\left(1-x^{2}\right)^{\lambda-\frac{1}{2}} d x \quad[\text { shift } n, m, \ell] \tag{2}\\
& \int_{0}^{\infty} x J_{1}(a x) I_{1}(a x) Y_{0}(x) K_{0}(x) d x \quad[\text { diff. } a] \tag{3}\\
& \int \frac{n^{2}+x+1}{n^{2}+1}\left(\frac{(x+1)^{2}}{(x-4)(x-3)^{2}\left(x^{2}-5\right)^{3}}\right)^{n} \sqrt{x^{2}-5} e^{\frac{x^{3}+1}{x(x-3)(x-4)^{2}}} d x
\end{align*}
$$ [shift n],

(4)
\dagger : Heuristic got these faster answers by looking for telescopers of non-minimal orders, yet smaller sizes.

Need to investigate failures: non-mathematical bugs? "not ours"?

