Karatsuba with Rectangular Multipliers for FPGAs

Martin Kumm Johannes Kappauf Peter Zipf

Oscar Gustafsson
Florent de Dinechin

U N I K A S S E L
V ER S I T 'A' T
$1 \begin{aligned} & \text { LINKÖPING } \\ & \text { UNIVERSITY }\end{aligned}$
MSA $=$ DES SCIENCES LYON

Introduction

Introduction

A matter of alignment

Some results

This paper is about multiplication

$\left.\begin{array}{llllllllllllll} & & & & & & & & 0 & 0 & 1 & 0 & 0 & 1\end{array}\right)$

This paper is about multiplication

This paper is about multiplication

Classical Karatsuba

Multiplication of $A \times B$, each of size 2 W bits

Classical Karatsuba

Multiplication of $A \times B$, each of size 2 W bits
Split each input into W-bits words:

$$
A \times B=\left(2^{W} a_{1}+a_{0}\right) \times\left(2^{W} b_{1}+b_{0}\right)
$$

Classical Karatsuba

Multiplication of $A \times B$, each of size 2 W bits
Split each input into W-bits words:

$$
A \times B=\left(2^{W} a_{1}+a_{0}\right) \times\left(2^{W} b_{1}+b_{0}\right)
$$

$=2^{2 W} a_{1} b_{1}+2^{W} a_{1} b_{0}+2^{W} a_{0} b_{1}+a_{0} b_{0}$
(4 multiplications of W-bit inputs)

Classical Karatsuba

Multiplication of $A \times B$, each of size 2 W bits Split each input into W-bits words:

$$
A \times B=\left(2^{W} a_{1}+a_{0}\right) \times\left(2^{W} b_{1}+b_{0}\right)
$$

$=2^{2 W} a_{1} b_{1}+2^{W} a_{1} b_{0}+2^{W} a_{0} b_{1}+a_{0} b_{0}$
(4 multiplications of W-bit inputs)
$=2^{2 W} a_{1} b_{1}+2^{W}\left(a_{1} b_{0}+a_{0} b_{1}\right)+a_{0} b_{0}$

Classical Karatsuba

Multiplication of $A \times B$, each of size 2 W bits Split each input into W-bits words:

$$
A \times B=\left(2^{W} a_{1}+a_{0}\right) \times\left(2^{W} b_{1}+b_{0}\right)
$$

$=2^{2 W} a_{1} b_{1}+2^{W} a_{1} b_{0}+2^{W} a_{0} b_{1}+a_{0} b_{0}$ (4 multiplications of W-bit inputs)
$=2^{2 W} a_{1} b_{1}+2^{W}\left(a_{1} b_{0}+a_{0} b_{1}\right)+a_{0} b_{0}$

Karatsuba identity

$$
a_{1} b_{0}+a_{0} b_{1}=\left(a_{1}-a_{0}\right)\left(b_{0}-b_{1}\right)+a_{0} b_{0}+a_{1} b_{1}
$$

Classical Karatsuba

Multiplication of $A \times B$, each of size 2 W bits Split each input into W-bits words:

$$
A \times B=\left(2^{W} a_{1}+a_{0}\right) \times\left(2^{W} b_{1}+b_{0}\right)
$$

$=2^{2 W} a_{1} b_{1}+2^{W} a_{1} b_{0}+2^{W} a_{0} b_{1}+a_{0} b_{0}$
(4 multiplications of W-bit inputs)
$=2^{2 W} a_{1} b_{1}+2^{W}\left(a_{1} b_{0}+a_{0} b_{1}\right)+a_{0} b_{0}$

Karatsuba identity

$$
a_{1} b_{0}+a_{0} b_{1}=\left(a_{1}-a_{0}\right)\left(b_{0}-b_{1}\right)+a_{0} b_{0}+a_{1} b_{1}
$$

3 multiplications only instead of 4

Classical Karatsuba

Multiplication of $A \times B$, each of size 2 W bits Split each input into W-bits words:

$$
A \times B=\left(2^{W} a_{1}+a_{0}\right) \times\left(2^{W} b_{1}+b_{0}\right)
$$

$=2^{2 W} a_{1} b_{1}+2^{W} a_{1} b_{0}+2^{W} a_{0} b_{1}+a_{0} b_{0}$
(4 multiplications of W-bit inputs)
$=2^{2 W} a_{1} b_{1}+2^{W}\left(a_{1} b_{0}+a_{0} b_{1}\right)+a_{0} b_{0}$

Karatsuba identity

$$
a_{1} b_{0}+a_{0} b_{1}=\left(a_{1}-a_{0}\right)\left(b_{0}-b_{1}\right)+a_{0} b_{0}+a_{1} b_{1}
$$

3 multiplications only instead of 4 at the cost of 4 extra additions

Graphical representation

Graphical representation

Graphical representation

Karatsuba algorithm

- compute $a_{0} b_{0}$ and $a_{1} b_{1}$
- $a_{1} b_{0}+a_{0} b_{1}$ computed as

$$
\left(a_{1}-a_{0}\right)\left(b_{0}-b_{1}\right)+a_{0} b_{0}+a_{1} b_{1}
$$

Graphical representation

Karatsuba algorithm

- compute $a_{0} b_{0}$ and $a_{1} b_{1}$
- $a_{1} b_{0}+a_{0} b_{1}$ computed as

$$
\left(a_{1}-a_{0}\right)\left(b_{0}-b_{1}\right)+a_{0} b_{0}+a_{1} b_{1}
$$

3-part Karatsuba

- compute $a_{0} b_{0}, a_{1} b_{1}$ and $a_{2} b_{2}$

3-part Karatsuba

- compute $a_{0} b_{0}, a_{1} b_{1}$ and $a_{2} b_{2}$
- $a_{1} b_{0}+a_{0} b_{1}$ computed as

$$
\left(a_{1}-a_{0}\right)\left(b_{0}-b_{1}\right)+a_{0} b_{0}+a_{1} b_{1}
$$

3-part Karatsuba

- compute $a_{0} b_{0}, a_{1} b_{1}$ and $a_{2} b_{2}$
- $a_{1} b_{0}+a_{0} b_{1}$ computed as

$$
\left(a_{1}-a_{0}\right)\left(b_{0}-b_{1}\right)+a_{0} b_{0}+a_{1} b_{1}
$$

- $a_{2} b_{1}+a_{1} b_{2}$ computed as

$$
\left(a_{2}-a_{1}\right)\left(b_{1}-b_{2}\right)+a_{1} b_{1}+a_{2} b_{2}
$$

3-part Karatsuba

- compute $a_{0} b_{0}, a_{1} b_{1}$ and $a_{2} b_{2}$
- $a_{1} b_{0}+a_{0} b_{1}$ computed as

$$
\left(a_{1}-a_{0}\right)\left(b_{0}-b_{1}\right)+a_{0} b_{0}+a_{1} b_{1}
$$

- $a_{2} b_{1}+a_{1} b_{2}$ computed as

$$
\left(a_{2}-a_{1}\right)\left(b_{1}-b_{2}\right)+a_{1} b_{1}+a_{2} b_{2}
$$

- $a_{2} b_{0}+a_{0} b_{2}$ computed as

$$
\left(a_{2}-a_{0}\right)\left(b_{0}-b_{2}\right)+a_{0} b_{0}+a_{2} b_{2}
$$

3-part Karatsuba

- compute $a_{0} b_{0}, a_{1} b_{1}$ and $a_{2} b_{2}$
- $a_{1} b_{0}+a_{0} b_{1}$ computed as

$$
\left(a_{1}-a_{0}\right)\left(b_{0}-b_{1}\right)+a_{0} b_{0}+a_{1} b_{1}
$$

- $a_{2} b_{1}+a_{1} b_{2}$ computed as

$$
\left(a_{2}-a_{1}\right)\left(b_{1}-b_{2}\right)+a_{1} b_{1}+a_{2} b_{2}
$$

- $a_{2} b_{0}+a_{0} b_{2}$ computed as

$$
\left(a_{2}-a_{0}\right)\left(b_{0}-b_{2}\right)+a_{0} b_{0}+a_{2} b_{2}
$$

6 multiplications instead of 9

4-part Karastuba

Two choices here:

- more of the same: 10 multipliers

- recursion on Karatsuba-2: 9 multipliers (but two levels of pre-adders).

More of the same

In general, Karatsuba- N uses $N(N+1) / 2$ multipliers

This is nice for FPGAs

... which embed up to 2000 small multiplier ($W=17$ bits)
Large multipliers that we could wish to build:

- 53×53 bits for double precision
- 113×113 for quad-precision
- 2560×2560 bits for fully homomorphic encryption

A word on sign management

- We are interested in large unsigned multiplications
- the a_{i} and b_{j} are unsigned, and so are the $a_{i} b_{j}$
- Our FPGA devices have signed multipliers, e.g. signed 18×18
- can be used as unsigned 17×17
- so the tile size should be 17×17
- Two variants of the Karatsuba formula
- $a_{0} b_{1}+a_{1} b_{0}=\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)-a_{0} b_{0}-a_{1} b_{1}$
- $a_{0} b_{1}+a_{1} b_{0}=\left(a_{1}-a_{0}\right)\left(b_{0}+b_{1}\right)+a_{0} b_{0}+a_{1} b_{1}$
- In both cases the new multiplier is one bit larger
- The variant with presubtraction needs a signed 18×18 : perfect match!
- ... for the majority of subproducts.

But multipliers in recent Xilinx devices are not square

(figure cut from Xilinx Ultrascale documentation)

But multipliers in recent Xilinx devices are not square

(figure cut from Xilinx Ultrascale documentation)

But multipliers in recent Xilinx devices are not square

(figure cut from Xilinx Ultrascale documentation)

Can we use them to build Karatsuba multipliers?

Yes you can!

Previous state of the art

```
Yes you can!
- either under-used as \(18 \times 18\)-bit (signed) multipliers or \(17 \times 17\)-bit (unsigned) ones
```


Previous state of the art

Yes you can!

- either under-used as 18×18-bit (signed) multipliers
 or 17×17-bit (unsigned) ones
- or, complemented to 27×27 bit (signed), using soft logic

Previous state of the art

Yes you can!

- either under-used as 18×18-bit (signed) multipliers
 or 17×17-bit (unsigned) ones
- or, complemented to 27×27 bit (signed), using soft logic

The present work
A solution with less waste (for large multiplications)

A matter of alignment

Introduction

A matter of alignment Some results

Back to the Karatsuba formula

The Karatsuba formula

$$
a_{i} b_{j}+a_{k} b_{\ell}=\left(a_{i}+a_{k}\right)\left(b_{j}+b_{\ell}\right)-a_{i} b_{\ell}-a_{k} b_{j}
$$

can be used if
the products $a_{i} b_{j}$ and $a_{k} b_{\ell}$ have the same weight
i.e.

$$
2^{W i+W j}=2^{W k+W \ell}
$$

or

$$
i+j=k+\ell
$$

Tiling with rectangular multipliers

- split A in 17-bit chunks,
- split B in 26-bit ones,
- tile the large multiplication;
- a tile corresponds to a DSP.

The Karatsuba formula can be used if
the products $a_{i} b_{j}$ and $a_{k} b_{\ell}$ have the same weight

Tiling with rectangular multipliers

- split A in 17 -bit chunks,
- split B in 26-bit ones,
- tile the large multiplication;
- a tile corresponds to a DSP.

The Karatsuba formula can be used if
the products $a_{i} b_{j}$ and $a_{k} b_{\ell}$ have the same weight

$$
2^{17 i} 2^{26 j}=2^{17 k} 2^{26 \ell}
$$

$$
\text { or } 17 i+26 j=17 k+26 \ell \quad \text { or } \quad 17(i-k)=26(\ell-j)
$$

Tiling with rectangular multipliers

- split A in 17-bit chunks,
- split B in 26 -bit ones,
- tile the large multiplication;
- a tile corresponds to a DSP.

The Karatsuba formula can be used if
the products $a_{i} b_{j}$ and $a_{k} b_{\ell}$ have the same weight

$$
2^{17 i} 2^{26 j}=2^{17 k} 2^{26 \ell}
$$

$$
\text { or } 17 i+26 j=17 k+26 \ell \quad \text { or } \quad 17(i-k)=26(\ell-j)
$$

17 being prime with pretty much anything, including 26 ,
$i-k$ must be a multiple of 26 and $(\ell-j)$ must be a multiple of $17 \ldots$

So far no good

... We could save one DSP block out of 486 in this 486-bit multiplier

So 17 is not a good number

Now consider a tile whose dimensions have a common factor W for example: 16×24 with $W=8$

- $16=2 \cdot 8$
($W=8, M=2$)
- $24=3 \cdot 8$
$(W=8, N=3)$
(a few other combinations of (W, M, N) studied in the paper) Tiles split into 8×8 squares, now looking for $2(i-k)=3(\ell-j)$ And we find two aligned tiles in the figure below:

... their sum can be computed using a single 17×25 signed product

Fighting the evil mischiefs of the fanatics of 17

... require primal(ity) sacrifices.

Fighting the evil mischiefs of the fanatics of 17

... require primal(ity) sacrifices.
Our DSPs shall be

- either $(W=8)$ under-used

$$
\begin{aligned}
& \text { as } 16 \times 24 \text { bits (unsigned) } \\
& \text { or } 17 \times 25 \text { bit }(\text { signed })
\end{aligned}
$$

Fighting the evil mischiefs of the fanatics of 17

... require primal(ity) sacrifices.
Our DSPs shall be

- either $(W=8)$ under-used

$$
\begin{aligned}
& \text { as } 16 \times 24 \text { bits (unsigned) } \\
& \text { or } 17 \times 25 \text { bit (signed) }
\end{aligned}
$$

- or $(W=9)$, complemented by soft logic

$$
\begin{aligned}
& \text { to } 18 \times 27 \text { bit (unsigned) } \\
& \text { or } 19 \times 28 \text { bit (signed) }
\end{aligned}
$$

Fighting the evil mischiefs of the fanatics of 17

... require primal(ity) sacrifices.
Our DSPs shall be

- either $(W=8)$ under-used

$$
\begin{aligned}
& \text { as } 16 \times 24 \text { bits (unsigned) } \\
& \text { or } 17 \times 25 \text { bit (signed) }
\end{aligned}
$$

- or $(W=9)$, complemented by soft logic

$$
\begin{aligned}
& \text { to } 18 \times 27 \text { bit (unsigned) } \\
& \text { or } 19 \times 28 \text { bit (signed) }
\end{aligned}
$$

The trade-off now

- Better use of the DSP resource:

The trade-off now

- Better use of the DSP resource:

- but fewer Karatsuba opportunities:

versus困

The trade-off now

- Better use of the DSP resource:

- but fewer Karatsuba opportunities:

versus

(it gets better for larger multipliers, e.g. 96×96)

Polynomial interpretation

A large multiplier of size $W(N+1) M \times W(M+1) N$
corresponds to the polynomial multiplication
of an $N+1$-term M-sparse polynomial
by an $M+1$-term N-sparse polynomial, both in $X=2^{W}$:

$$
\begin{equation*}
\left(\sum_{j=0}^{N} a_{j M} X^{j M}\right)\left(\sum_{k=0}^{M} b_{k N} X^{k N}\right)=\sum_{i=0}^{2 M N} c_{i} X^{i} \tag{1}
\end{equation*}
$$

- Identifying coefficients on both sides gives Karatsuba opportunities
- ... and arguments of optimality.
- Patterns studied in the paper:
- $W(N+1) M \times W(M+1) N$
- $2 W N M \times 2 W M N$
- $W(2 N+1) M \times W(2 M+1) N$

Some results

Introduction

A matter of alignment

Some results

The big tables are in the paper

- implementation with comparable effort in FloPoCo
- comparison of
- square Karatsuba,
- rectangular tiling,
- rectangular Karatsuba.
- Different soft spots, hence difficult to compare
- Executive summary: rectangular Karatsuba saves DSP and logic for multipliers large enough

Operation counts

Square				Rectangular				
	Karatsuba			Size	$\begin{aligned} & \frac{\text { Tiling }}{\text { Mult }=} \\ & \text { Post-add } \end{aligned}$	Karatsuba		
Size	Mult	Preadd	Postadd			Mult	Preadd	Postadd
51×51	6	6	6	48×48	6	6	0	6
68×68	10	12	22	64×72	12	11	2	13
102×102	21	30	51	96×96	24	18	5	30
119×119	28	42	70	112×120	35	27	7	43

Actual sythesis results on Virtex-6

	Size	DSPs	LUTs	Cycles	$f_{\text {max }}[\mathrm{MHz}]$
Square Kara.	68×68	10	1405	11	215.1
Rect. Tiling	64×72	12	764	10	217.5
Rect. Kara.	64×72	11	867	10	247.0
Square Kara.	102×102	21	2524	13	192.0
Rect. Tiling	96×96	24	1586	13	215.1
Rect. Kara.	96×96	18	2032	14	195.1
Square Kara.	119×119	28	3438	15	192.6
Rect. Tiling	112×120	35	2293	16	218.9
Rect. Kara.	112×120	27	2292	14	190.1

Conclusion and future work

- Significant reduction in DSP and pre-adder counts,
- Translate predictably to reduction in resource consumption
- Effective only for very large multipliers (well beyond double precision)
- Paper was written for Virtex6 with 18×25, series 7 has 18×27
- Other challenges for homomorphic-grade multipliers...

Other tricks for smaller multipliers

