Karatsuba with Rectangular Multipliers for FPGAs

Martin Kumm Johannes Kappauf VERSIT'A'T Peter Zipf

Oscar Gustafsson

Florent de Dinechin

UNIKASSEL

Introduction

Introduction

A matter of alignment

Some results

Kumm, Gustafsson, de Dinechin, Kappauf, Zipf Karatsuba with Rectangular Multipliers for FPGAs

This paper is about multiplication

Kumm, Gustafsson, de Dinechin, Kappauf, Zipf Karatsuba with Rectangular Multipliers for FPGAs

This paper is about multiplication

This paper is about multiplication

Multiplication of $A \times B$, each of size 2W bits

Multiplication of $A \times B$, each of size 2W bits Split each input into *W*-bits words:

$$A \times B = (2^{W}a_1 + a_0) \times (2^{W}b_1 + b_0)$$

Multiplication of $A \times B$, each of size 2W bits Split each input into *W*-bits words:

$$A \times B = (2^W a_1 + a_0) \times (2^W b_1 + b_0)$$

$$= 2^{2W} a_1 b_1 + 2^{W} a_1 b_0 + 2^{W} a_0 b_1 + a_0 b_0$$

(4 multiplications of W-bit inputs)

Multiplication of $A \times B$, each of size 2W bits Split each input into *W*-bits words:

$$A \times B = (2^W a_1 + a_0) \times (2^W b_1 + b_0)$$

$$= 2^{2W} a_1 b_1 + 2^{W} a_1 b_0 + 2^{W} a_0 b_1 + a_0 b_0$$

(4 multiplications of W-bit inputs)

$$= 2^{2W} a_1 b_1 + 2^W (a_1 b_0 + a_0 b_1) + a_0 b_0$$

Multiplication of $A \times B$, each of size 2W bits Split each input into *W*-bits words:

$$A \times B = (2^{W}a_{1} + a_{0}) \times (2^{W}b_{1} + b_{0})$$

$$= 2^{2W}a_{1}b_{1} + 2^{W}a_{1}b_{0} + 2^{W}a_{0}b_{1} + a_{0}b_{0}$$
(4 multiplications of W-bit inputs)
$$= 2^{2W}a_{1}b_{1} + 2^{W}(a_{1}b_{0} + a_{0}b_{1}) + a_{0}b_{0}$$

$$A \times B = (2^{W}a_{1}b_{1} + 2^{W}a_{1}b_{0} + a_{0}b_{1}) + a_{0}b_{0}$$

$$A \times B = (2^{W}a_{1}b_{1} + 2^{W}a_{1}b_{0} + a_{0}b_{1}) + a_{0}b_{0}$$

$$A \times B = (2^{W}a_{1}b_{1} + 2^{W}a_{1}b_{0} + a_{0}b_{1}) + a_{0}b_{0}$$

Karatsuba identity $a_1b_0 + a_0b_1 = (a_1 - a_0)(b_0 - b_1) + a_0b_0 + a_1b_1$

Kumm, Gustafsson, de Dinechin, Kappauf, Zipf

W

Multiplication of $A \times B$, each of size 2W bits Split each input into *W*-bits words:

$$A \times B = (2^{W}a_{1} + a_{0}) \times (2^{W}b_{1} + b_{0}) \times b_{1} + b_{0} \times b_{1} \times b_{0} \times b_{0} \times b_{1} \times b_{0} \times b_{0}$$

Karatsuba identity $a_1b_0 + a_0b_1 = (a_1 - a_0)(b_0 - b_1) + a_0b_0 + a_1b_1$

3 multiplications only instead of 4

Kumm, Gustafsson, de Dinechin, Kappauf, Zipf

Karatsuba with Rectangular Multipliers for FPGAs

W

Multiplication of $A \times B$, each of size 2W bits Split each input into *W*-bits words:

$$A \times B = (2^{W}a_{1} + a_{0}) \times (2^{W}b_{1} + b_{0})$$

$$= 2^{2W}a_{1}b_{1} + 2^{W}a_{1}b_{0} + 2^{W}a_{0}b_{1} + a_{0}b_{0}$$
(4 multiplications of W-bit inputs)
$$= 2^{2W}a_{1}b_{1} + 2^{W}(a_{1}b_{0} + a_{0}b_{1}) + a_{0}b_{0}$$
Karatsuba identity

$$a_1b_0 + a_0b_1 = (a_1 - a_0)(b_0 - b_1) + a_0b_0 + a_1b_1$$

3 multiplications only instead of 4 at the cost of **4** extra additions

Kumm, Gustafsson, de Dinechin, Kappauf, Zipf

Karatsuba with Rectangular Multipliers for FPGAs

M

a_1	<i>a</i> 0	
a_1b_0	$a_0 b_0$	<i>b</i> 0
a_1b_1	a_0b_1	b_1

a_1	<i>a</i> 0	
a_1b_0	$a_0 b_0$	<i>b</i> 0
a_1b_1	a_0b_1	b_1

Karatsuba algorithm • compute a_0b_0 and a_1b_1

• $a_1b_0 + a_0b_1$ computed as $(a_1 - a_0)(b_0 - b_1) + a_0b_0 + a_1b_1$

- compute a_0b_0 , a_1b_1 and a_2b_2
- $a_1b_0 + a_0b_1$ computed as $(a_1 - a_0)(b_0 - b_1) + a_0b_0 + a_1b_1$

- compute a_0b_0 , a_1b_1 and a_2b_2
- $a_1b_0 + a_0b_1$ computed as $(a_1 - a_0)(b_0 - b_1) + a_0b_0 + a_1b_1$
- $a_2b_1 + a_1b_2$ computed as $(a_2 - a_1)(b_1 - b_2) + a_1b_1 + a_2b_2$

- compute a_0b_0 , a_1b_1 and a_2b_2
- $a_1b_0 + a_0b_1$ computed as $(a_1 - a_0)(b_0 - b_1) + a_0b_0 + a_1b_1$
- $a_2b_1 + a_1b_2$ computed as $(a_2 - a_1)(b_1 - b_2) + a_1b_1 + a_2b_2$

•
$$a_2b_0 + a_0b_2$$
 computed as
 $(a_2 - a_0)(b_0 - b_2) + a_0b_0 + a_2b_2$

- compute a_0b_0 , a_1b_1 and a_2b_2
- $a_1b_0 + a_0b_1$ computed as $(a_1 - a_0)(b_0 - b_1) + a_0b_0 + a_1b_1$
- $a_2b_1 + a_1b_2$ computed as $(a_2 - a_1)(b_1 - b_2) + a_1b_1 + a_2b_2$
- $a_2b_0 + a_0b_2$ computed as $(a_2 - a_0)(b_0 - b_2) + a_0b_0 + a_2b_2$

6 multiplications instead of 9

Two choices here:

• more of the same: 10 multipliers

recursion on Karatsuba-2: 9 multipliers (but two levels of pre-adders).

More of the same

In general, Karatsuba-N uses N(N+1)/2 multipliers

... which embed up to 2000 small multiplier (W = 17 bits) Large multipliers that we could wish to build:

- 53×53 bits for double precision
- 113×113 for quad-precision
- 2560×2560 bits for fully homomorphic encryption

A word on sign management

- We are interested in large unsigned multiplications
 - the a_i and b_j are unsigned, and so are the $a_i b_j$
- Our FPGA devices have signed multipliers, e.g. signed 18x18
 - can be used as unsigned 17×17
 - so the tile size should be 17x17
- Two variants of the Karatsuba formula

•
$$a_0b_1 + a_1b_0 = (a_0 + a_1)(b_0 + b_1) - a_0b_0 - a_1b_1$$

•
$$a_0b_1 + a_1b_0 = (a_1 - a_0)(b_0 + b_1) + a_0b_0 + a_1b_1$$

In both cases the new multiplier is one bit larger

- The variant with presubtraction needs a signed 18x18: perfect match!
- ... for the majority of subproducts.

But multipliers in recent Xilinx devices are not square

(figure cut from Xilinx Ultrascale documentation)

But multipliers in recent Xilinx devices are not square

(figure cut from Xilinx Ultrascale documentation)

Kumm, Gustafsson, de Dinechin, Kappauf, Zipf Karatsuba with Rectangular Multipliers for FPGAs

But multipliers in recent Xilinx devices are not square

(figure cut from Xilinx Ultrascale documentation)

Can we use them to build Karatsuba multipliers?

Kumm, Gustafsson, de Dinechin, Kappauf, Zipf Karatsuba with Rectangular Multipliers for FPGAs

Yes you can !

Yes you can !

• either under-used

as 18 \times 18-bit (signed) multipliers or 17 \times 17-bit (unsigned) ones

Yes you can !

either under-used

as 18 \times 18-bit (signed) multipliers or 17 \times 17-bit (unsigned) ones

• or, complemented to 27 \times 27 bit (signed), using soft logic

Yes you can !

• either under-used

The present work

as 18 \times 18-bit (signed) multipliers or 17 \times 17-bit (unsigned) ones

 \bullet or, complemented to 27 \times 27 bit (signed), using soft logic

A solution with less waste (for large multiplications)

Kumm, Gustafsson, de Dinechin, Kappauf, Zipf Karatsuba with Rectangular Multipliers for FPGAs

A matter of alignment

Introduction

A matter of alignment

Some results

Kumm, Gustafsson, de Dinechin, Kappauf, Zipf Karatsuba with Rectangular Multipliers for FPGAs

The Karatsuba formula

$$a_i b_j + a_k b_\ell = (a_i + a_k)(b_j + b_\ell) - a_i b_\ell - a_k b_j$$

can be used if

the products $a_i b_j$ and $a_k b_\ell$ have the same weight

i.e.

or

$$2^{Wi+Wj} = 2^{Wk+W\ell}$$
$$i+i = k+\ell$$

Kumm, Gustafsson, de Dinechin, Kappauf, Zipf

Tiling with rectangular multipliers

- split A in 17-bit chunks,
- split B in 26-bit ones,
- tile the large multiplication;
- a tile corresponds to a DSP.

The Karatsuba formula can be used if

the products $a_i b_j$ and $a_k b_\ell$ have the same weight

Tiling with rectangular multipliers

- split A in 17-bit chunks,
- split B in 26-bit ones,
- tile the large multiplication;
- a tile corresponds to a DSP.

The Karatsuba formula can be used if

the products $a_i b_i$ and $a_k b_{\ell}$ have the same weight

$$2^{17i}2^{26j} = 2^{17k}2^{26\ell}$$

or $17i + 26j = 17k + 26\ell$ or $17(i - k) = 26(\ell - j)$

 $a_5 a_4 a_3 a_2 a_1 a_0$

 b_0

 b_1

b₂

Tiling with rectangular multipliers

- split A in 17-bit chunks,
- split B in 26-bit ones,
- tile the large multiplication;
- a tile corresponds to a DSP.

The Karatsuba formula can be used if

the products $a_i b_j$ and $a_k b_\ell$ have the same weight

$$2^{17i}2^{26j} = 2^{17k}2^{26\ell}$$

or $17i + 26j = 17k + 26\ell$ or $17(i - k) = 26(\ell - j)$

17 being prime with pretty much anything, including 26, i - k must be a multiple of 26 and $(\ell - j)$ must be a multiple of 17...

Kumm, Gustafsson, de Dinechin, Kappauf, Zipf Karatsuba with Rectangular Multipliers for FPGAs

So far no good

... We could save one DSP block out of 486 in this 486-bit multiplier

So 17 is not a good number

Now consider a tile whose dimensions have a common factor W for example: **16x24** with W = 8

- $16 = 2 \cdot 8$ (W = 8, M = 2)
- $24 = 3 \cdot 8$ (W = 8, N = 3)

(a few other combinations of (W, M, N) studied in the paper) Tiles split into 8x8 squares, now looking for $2(i - k) = 3(\ell - j)$ And we find two aligned tiles in the figure below:

... their sum can be computed using a single 17x25 signed product

Kumm, Gustafsson, de Dinechin, Kappauf, Zipf

Karatsuba with Rectangular Multipliers for FPGAs

... require primal(ity) sacrifices.

... require primal(ity) sacrifices.

Our DSPs shall be

• either (W = 8) under-used

as 16 \times 24 bits (unsigned) or 17 \times 25 bit (signed)

... require primal(ity) sacrifices.

Our DSPs shall be

• either (W = 8) under-used

as 16×24 bits (unsigned) or 17×25 bit (signed)

• or (W = 9), complemented by soft logic to 18×27 bit (unsigned) or 19×28 bit (signed)

... require primal(ity) sacrifices.

Our DSPs shall be

• either (W = 8) under-used

as 16×24 bits (unsigned) or 17×25 bit (signed)

• or (W = 9), complemented by soft logic to 18 imes 27 bit (unsigned) or 19 imes 28 bit (signed)

Kumm, Gustafsson, de Dinechin, Kappauf, Zipf

The trade-off now

• Better use of the DSP resource:

The trade-off now

- Better use of the DSP resource:
- but fewer Karatsuba opportunities:

The trade-off now

- Better use of the DSP resource:
- but fewer Karatsuba opportunities:

(it gets better for larger multipliers, e.g. 96x96)

Polynomial interpretation

A large multiplier of size $W(N+1)M \times W(M+1)N$ corresponds to the polynomial multiplication of an N + 1-term M-sparse polynomial by an M + 1-term N-sparse polynomial, both in $X = 2^W$:

$$\left(\sum_{j=0}^{N} a_{jM} X^{jM}\right) \left(\sum_{k=0}^{M} b_{kN} X^{kN}\right) = \sum_{i=0}^{2MN} c_i X^i.$$
(1)

- Identifying coefficients on both sides gives Karatsuba opportunities
- ... and arguments of optimality.
- Patterns studied in the paper:

•
$$W(N+1)M \times W(M+1)N$$

- $2WNM \times 2WMN$
- $W(2N+1)M \times W(2M+1)N$

Some results

Introduction

A matter of alignment

Some results

Kumm, Gustafsson, de Dinechin, Kappauf, Zipf Karatsuba with Rectangular Multipliers for FPGAs

The big tables are in the paper

- implementation with comparable effort in FloPoCo
- comparison of
 - square Karatsuba,
 - rectangular tiling,
 - rectangular Karatsuba.
- Different soft spots, hence difficult to compare
- Executive summary: rectangular Karatsuba saves DSP and logic for multipliers large enough

Operation counts

	Square	!			Rectang	gular		
Karatsuba			Tiling	K	Karatsuba			
Size	Mult	Pre- add	Post- add	Size	Mult = Post-add	Mult	Pre- add	Post- add
51 imes 51	6	6	6	48 imes 48	6	6	0	6
68 imes 68	10	12	22	64 imes 72	12	11	2	13
102 imes 102	21	30	51	96 imes96	24	18	5	30
119×119	28	42	70	112×120	35	27	7	43

Implementation in FloPoCo

(state-of-the-art compression techniques for the final summation)

	Size	DSPs	LUTs	Cycles	<i>f</i> _{max} [MHz]
Square Kara. Rect. Tiling	68 imes 68	10	1405	11	215.1
	64 imes 72	12	764	10	217.5
Rect. Kara.	64 imes 72	11	867	10	247.0
Square Kara.	102 imes 102	21	2524	13	192.0
Rect. Tiling	96 imes96	24	1586	13	215.1
Rect. Kara.	96 imes 96	18	2032	14	195.1
Square Kara.	119×119	28	3438	15	192.6
Rect. Tiling	112 imes 120	35	2293	16	218.9
Rect. Kara.	112 imes 120	27	2292	14	190.1

- Significant reduction in DSP and pre-adder counts,
- Translate predictably to reduction in resource consumption
- Effective only for very large multipliers (well beyond double precision)
- Paper was written for Virtex6 with 18x25, series 7 has 18x27
- Other challenges for homomorphic-grade multipliers...

Other tricks for smaller multipliers

