A Three-tier Strategy for Reasoning about Floating-Point Numbers in SMT

Mohamed Iguernlala

OCamlPRO

Joint Work with : Sylvain Conchon, Kailiang Ji, Guillaume Melquiond, Clément Fumex

(Binary) Floating-Point Arithmetic

- Natural way of approximating Real numbers in computers
- Optimized memory representation and efficient operations

FPA pitfalls for common programmers

- What you expect on Reals is not what you get on FP numbers!

$$
\begin{aligned}
& x=1.0 ; \\
& y=1000000000 . ; \\
& \text { if }(x+y>y) \\
& \text { else }
\end{aligned}
$$

The result of an FP computation may arbitrary diverge from expected Real value

FPA reasoning

- Mainly investigated in the context of theorem proving, abstract interpretation, and constraints solving
- Considered only recently in SMT
- An SMT-LIB theory for FPA, based on IEEE 754-2008
- Some effort to design (decision) procedures for FPA
- Some SMT solvers already implement FPA solvers

FPA reasoning in SMT

Bit-blasting (Z3, MathSAT5, SONOLAR)

- circuits encoding (heuristic : reduce FP precision to scale)

Abstract CDCL (MathSAT5)

- CDCL on FP abstract domains

Offline reduction to non-linear RIA (REALIZER+Z3)

- reduction to NRA + rounding operator
- encoding to RIA
- exceptional values not handled!

FPA reasoning in SMT

Bit-blasting (Z3, MathSAT5, SONOLAR)

- circuits encoding (heuristic : reduce FP precision to scale)

Abstract CDCL (MathSAT5)

- CDCL on FP abstract domains

Offline reduction to non-linear RIA (REALIZER+Z3)

- reduction to NRA + rounding operator
- encoding to RIA
- exceptional values not handled!
\rightarrow Some FPA proofs are simpler on reals !
\rightarrow Combination with other theories? (eg. Reals)

Our idea : Online/Lazy reduction to NRA

Current implementation in Alt-Ergo

Current implementation in Alt-Ergo

Our approach on an example

$$
\begin{gathered}
(2 \cdot \mathrm{~F} \preceq u \preceq 10 \cdot \mathrm{~F} \wedge 2 \cdot \mathrm{~F} \preceq v \preceq 10 \cdot \mathrm{~F}) \Longrightarrow \\
(\overline{u \oplus v})-(\bar{u}+\bar{v}) \leq 0.00000096
\end{gathered}
$$

u and v are simple precision FP variables,
2. F and $10 . \mathrm{F}$ are two FP constants,
\preceq is the less-or-equal predicate over FP numbers,
\oplus is FP addition,
\bar{x} denotes the Real value of an FP expression x

Example : (some) axioms from "Layer 1"

L1-1 $\quad \forall z$. in_range $(z) \Longleftrightarrow-0 \times 1$.FFFFFEp127 $\leq z \leq 0 \times 1$.FFFFFEp127
L1-2 $\quad \forall m . \forall x . \forall y$.

$$
\begin{aligned}
& \left(\text { is_finite }(x) \wedge \text { is_finite }(y) \wedge \text { in_range }\left(\operatorname{round}_{m}(\bar{x}+\bar{y})\right)\right) \Longrightarrow \\
& \overline{x \oplus_{m} y}=\operatorname{round}_{m}(\bar{x}+\bar{y})
\end{aligned}
$$

L1-3 $\quad \forall x . \forall y . x \preceq y \Longrightarrow$

$$
\bigvee\left(\begin{array}{l}
\text { is_finite }(x) \wedge \text { is_finite }(y) \\
\text { is_infinite }(x) \wedge \text { is_negative }(x) \wedge \neg \text { is_nan }(y) \\
\text { is_infinite }(y) \wedge \text { is_positive }(y) \wedge \neg \text { is_nan }(x)
\end{array}\right)
$$

L1-4 $\quad \forall x . \forall y .($ is_finite $(x) \wedge$ is_finite $(y) \wedge x \preceq y) \Longrightarrow \bar{x} \leq \bar{y}$
L1-5 $\forall x .($ is_infinite $(x) \vee$ is_nan $(x)) \Longrightarrow \neg$ is_finite (x)
L1-6 $\quad \forall x . \neg$ (is_negative $(x) \wedge$ is_positive $(x))$

Generic axiomatization of FP theory from Why3 [VSTTE'17]

Example : (some) axioms from "Layer 2"

Some mathematical properties about round operator

L2-1 $\forall m, i, j, z$.

$$
i \leq z \leq j \Longrightarrow \operatorname{round}_{m}(i) \leq \operatorname{round}_{m}(z) \leq \operatorname{round}_{m}(j)
$$

L2-2 $\forall m, i, j, z$.

$$
i \leq z \leq j \Longrightarrow-2^{\alpha} \leq \operatorname{round}_{m}(z)-z \leq 2^{\alpha}
$$

$$
\text { where } \alpha \equiv i \log _{2}\left(\max \left(|i|,|j|, 2^{e_{\min }+\text { prec }-1}\right)\right)-\text { prec }
$$

\rightarrow For single-precision FP, prec $=24$ and $e_{\min }=-149$

Example : (some) axioms from "Layer 2"

Some mathematical properties about round operator

L2-1 $\forall m, i, j, z$.

$$
i \leq z \leq j \Longrightarrow \operatorname{round}_{m}(i) \leq \operatorname{round}_{m}(z) \leq \operatorname{round}_{m}(j)
$$

L2-2 $\forall m, i, j, z$.

$$
i \leq z \leq j \Longrightarrow-2^{\alpha} \leq \operatorname{round}_{m}(z)-z \leq 2^{\alpha}
$$

$$
\text { where } \alpha \equiv \operatorname{ilog} g_{2}\left(\max \left(|i|,|j|, 2^{e_{\text {min }}+\text { prec }-1}\right)\right)-\text { prec }
$$

\rightarrow For single-precision FP, prec $=24$ and $e_{\min }=-149$
Challenge : how to efficiently instantiate this kind of axioms in SMT

Our approach on an example (very quickly !)

(2. $\preceq u \preceq 10 . \wedge 2 . \preceq v \preceq 10.) \Rightarrow(\overline{u \oplus v})-(\bar{u}+\bar{v}) \leq 0.00000096$

Our approach on an example (very quickly !)

(2. $\preceq u \preceq 10 . \wedge 2 . \preceq v \preceq 10.) \Rightarrow(\overline{u \oplus v})-(\bar{u}+\bar{v}) \leq 0.00000096$

Our approach on an example (very quickly !)

$$
\text { (2. } \preceq u \preceq \text { 10. } \wedge 2 . \preceq v \preceq 10 .) \Rightarrow(\overline{u \oplus v})-(\bar{u}+\bar{v}) \leq 0.00000096
$$

Layers	axioms	reasoners	

Our approach on an example (very quickly !)

(2. $\preceq u \preceq 10 . \wedge 2 . \preceq v \preceq 10.) \Rightarrow(\overline{u \oplus v})-(\bar{u}+\bar{v}) \leq 0.00000096$

L1-3 $: \forall x . \forall y . x \preceq y \Longrightarrow \bigvee\left(\begin{array}{l}\text { is_finite }(x) \wedge \text { is_finite }(y) \\ \text { is_infinite }(x) \wedge \text { is_negative }(x) \wedge \neg \text { is_nan }(y) \\ \text { is_infinite }(y) \wedge \text { is_positive }(y) \wedge \neg \text { is_nan }(x)\end{array}\right)$

Layers	axioms	reasoners	deductions
0	H		is_finite(2.), is_finite(10.)
1	L1-3	EM, SAT	is_finite $(u) \vee$ (is_infinite($(u) \wedge$ is_negative($u)$)
1	L1-3	EM, SAT	is_finite $(v) \vee$ (is_infinite $(v) \wedge$ is_negative($v)$)

Our approach on an example (very quickly !)

$(2 . \preceq u \preceq 10 . \wedge 2 . \preceq v \preceq 10.) \Rightarrow(\overline{u \oplus v})-(\bar{u}+\bar{v}) \leq 0.00000096$

L1-6 : $\forall x . \neg$ (is_negative $(x) \wedge$ is_positive (x))

Layers	axioms	reasoners	deductions
			is_finite(2.), is_finite(10.)
			is_finite $(u) \vee$ (is_infinite(u) \wedge is_negative($u)$)
			is_finite($v) \vee$ (is_infinite($v) \wedge$ is_negative (v))
1	L1-6	EM, SAT	is_finite(u)

Our approach on an example (very quickly !)

$$
\begin{aligned}
& (2 . \preceq u \preceq 10 . \wedge 2 . \preceq v \preceq 10 .) \Rightarrow(\overline{u \oplus v})-(\bar{u}+\bar{v}) \leq 0.00000096 \\
& \text { L1-4 : } \forall x . \forall y . \quad \text { is_finite }(x) \wedge \text { is_finite }(y) \wedge x \preceq y) \Longrightarrow \bar{x} \leq \bar{y}
\end{aligned}
$$

Layers	axioms	reasoners	deductions
			is_finite (u)
			is_finite (v)
1	L1-4	EM, SAT	$2 \leq \bar{u}$
1	L1-4	EM, SAT	$2 \leq \bar{v}$
1	L1-4	EM, SAT	$\bar{u} \leq 10$
1	L1-4	EM, SAT	$\bar{v} \leq 10$

Our approach on an example (very quickly !)

$$
(2 . \preceq u \preceq 10 . \wedge 2 . \preceq v \preceq 10 .) \Rightarrow(\overline{u \oplus v})-(\bar{u}+\bar{v}) \leq 0.00000096
$$

L1-2:
$\forall m . \forall x . \forall y . \quad \frac{\left(\text { is_finite }(x) \wedge \text { is_finite }(y) \wedge \text { in_range }\left(\circ_{m}(\bar{x}+\bar{y})\right)\right) \Longrightarrow}{x \oplus_{m} y}=\circ_{m}(\bar{x}+\bar{y}) \quad \Longrightarrow$

Layers	axioms	reasoners	deductions
			is_finite (u)
			is_finite (v)
			$2 \leq \bar{u}$
			$2 \leq \bar{v}$
			$\bar{u} \leq 10$
			$\bar{v} \leq 10$
5	L1-2	EM, SAT	in_range $(\circ(\bar{u}+\bar{v})) \Rightarrow \overline{u \oplus v}=\circ(\bar{u}+\bar{v})$

Our approach on an example (very quickly !)

(2. $\preceq u \preceq 10 . \wedge 2 . \preceq v \preceq 10.) \Rightarrow(\overline{u \oplus v})-(\bar{u}+\bar{v}) \leq 0.00000096$

Layers	axioms	reasoners	deductions
			$2 \leq \bar{u} \leq 10, \quad 2 \leq \bar{v} \leq 10$
			in_range $(\circ(\bar{u}+\bar{v})) \Rightarrow \overline{u \oplus v}=\circ(\bar{u}+\bar{v})$
3		NRA	$\bar{u}+\bar{v} \in[4 ; 20]$

Our approach on an example (very quickly !)

(2. $\preceq u \preceq 10 . \wedge 2 . \preceq v \preceq 10.) \Rightarrow(\overline{u \oplus v})-(\bar{u}+\bar{v}) \leq 0.00000096$

L2-2: $\forall z . \forall i . \forall j . \quad i \leq z \leq j \Longrightarrow-2^{\alpha} \leq \circ(z)-z \leq 2^{\alpha}$
where $\alpha=\operatorname{ilog}_{2}\left(\max \left(|i|,|j|, 2^{e_{\min }+\text { prec }-1}\right)\right)-$ prec

Layers	axioms	reasoners	deductions
			in_range $(\circ(\bar{u}+\bar{v})) \Rightarrow \overline{u \oplus v}=\circ(\bar{u}+\bar{v})$
			$\bar{u}+\bar{v} \in[4 ; 20]$
2	L2-2	EM, IM, SAT	$-2^{-20} \leq \circ(\bar{u}+\bar{v})-(\bar{u}+\bar{v}) \leq 2^{-20}$

Our approach on an example (very quickly!)

(2. $\preceq u \preceq 10 . \wedge 2 . \preceq v \preceq 10.) \Rightarrow(\overline{u \oplus v})-(\bar{u}+\bar{v}) \leq 0.00000096$

Layers	axioms	reasoners	deductions
			in_range $(\circ(\bar{u}+\bar{v})) \Rightarrow \overline{u \oplus v}=\circ(\bar{u}+\bar{v})$
			$\bar{u}+\bar{v} \in[4 ; 20]$
			$-2^{-20} \leq \circ(\bar{u}+\bar{v})-(\bar{u}+\bar{v}) \leq 2^{-20}$
3		NRA	$4-2^{-20} \leq \circ(\bar{u}+\bar{v}) \leq 20+2^{-20}$

Our approach on an example (very quickly !)

$$
(2 . \preceq u \preceq 10 . \wedge 2 . \preceq v \preceq 10 .) \Rightarrow(\overline{u \oplus v})-(\bar{u}+\bar{v}) \leq 0.00000096
$$

L1-1: $\forall z$. in_range $(z) \Longleftrightarrow-0 \times 1$.FFFFFEp127 $\leq z \leq 0 \times 1$.FFFFFEp127

Layers	axioms	reasoners	deductions
			in_range $(\circ(\bar{u}+\bar{v})) \Rightarrow \overline{u \oplus v}=\circ(\bar{u}+\bar{v})$
			$-2^{-20} \leq \circ(\bar{u}+\bar{v})-(\bar{u}+\bar{v}) \leq 2^{-20}$
			$4-2^{-20} \leq \circ(\bar{u}+\bar{v}) \leq 20+2^{-20}$
$1+3$	L1-1	EM, SAT, NRA	in_range $(\circ(\bar{u}+\bar{v}))$

Our approach on an example (very quickly !)

(2. $\preceq u \preceq 10 . \wedge 2 . \preceq v \preceq 10.) \Rightarrow(\overline{u \oplus v})-(\bar{u}+\bar{v}) \leq 0.00000096$

Layers	axioms	reasoners	deductions
			in_range $(\circ(\bar{u}+\bar{v})) \Rightarrow \overline{u \oplus v}=\circ(\bar{u}+\bar{v})$
			$-2^{-20} \leq \circ(\bar{u}+\bar{v})-(\bar{u}+\bar{v}) \leq 2^{-20}$
			in_range $(\circ(\bar{u}+\bar{v}))$
			$\bar{u} \oplus \bar{v}=\circ(\bar{u}+\bar{v})$
		SAT	

Our approach on an example (very quickly !)

(2. $\preceq u \preceq 10 . \wedge 2 . \preceq v \preceq 10.) \Rightarrow(\overline{u \oplus v})-(\bar{u}+\bar{v}) \leq 0.00000096$

Layers	axioms	reasoners	deductions
			$-2^{-20} \leq \circ(\bar{u}+\bar{v})-(\bar{u}+\bar{v}) \leq 2^{-20}$
			$\overline{u \oplus v}=\circ(\bar{u}+\bar{v})$
			$\overline{u \oplus v}-(\bar{u}+\bar{v}) \leq 2^{-20}$
			NRA

Our approach on an example (very quickly!)

(2. $\preceq u \preceq 10 . \wedge 2 . \preceq v \preceq 10.) \Rightarrow(\overline{u \oplus v})-(\bar{u}+\bar{v}) \leq 0.00000096$

Layers	axioms	reasoners	deductions
			$\overline{u \oplus v}-(\bar{u}+\bar{v}) \leq 2^{-20}<0.00000096$

Main ingredient : intervals matching
$\forall z . \forall i . \forall j . \quad i \leq z \leq j \Longrightarrow-2^{\alpha} \leq \operatorname{round}(z)-z \leq 2^{\alpha}$
where $\alpha \equiv \operatorname{ilog}_{2}\left(\max \left(|i|,|j|, 2^{e_{\text {min }}+\text { prec }-1}\right)\right)-$ prec

Main ingredient : intervals matching

$\forall z . \forall i . \forall j . i \leq z \leq j \Longrightarrow-2^{\alpha} \leq \operatorname{round}(z)-z \leq 2^{\alpha}$ where $\alpha \equiv \operatorname{ilog}_{2}\left(\max \left(|i|,|j|, 2^{e_{\text {min }}+\text { prec }-1}\right)\right)$ - prec

- To handle universally quantified formulas, techniques based on matching need patterns (that cover all quantified variables)
(eg. $\quad\{\operatorname{round}(z), i, j\} \quad$ or $\quad\{\operatorname{round}(z), \operatorname{abs}(i), \operatorname{abs}(j))\}$

Main ingredient : intervals matching

$\forall z . \forall i . \forall j . i \leq z \leq j \Longrightarrow-2^{\alpha} \leq \operatorname{round}(z)-z \leq 2^{\alpha}$
where $\alpha \equiv \operatorname{ilog}_{2}\left(\max \left(|i|,|j|, 2^{e_{\text {min }}+\text { prec }-1}\right)\right)$ - prec

- To handle universally quantified formulas, techniques based on matching need patterns (that cover all quantified variables) (eg. $\{\operatorname{round}(z), i, j\}$ or $\{\operatorname{round}(z), \operatorname{abs}(i), \operatorname{abs}(j))\}$
- Syntactic patterns are not well suited to instantiate axioms about rounding properties

Main ingredient : intervals matching

$\forall z . \forall i . \forall j . \quad i \leq z \leq j \Longrightarrow-2^{\alpha} \leq \operatorname{round}(z)-z \leq 2^{\alpha}$
where $\alpha \equiv \operatorname{ilog}_{2}\left(\max \left(|i|,|j|, 2^{e_{\text {min }}+\text { prec }-1}\right)\right)-$ prec

Solution:

- Use a mix of syntactic and semantic patterns to cover universally quantified variables

$$
\text { (eg. } \quad\{\operatorname{round}(z), \quad z \in[i, j]\})
$$

- Use intervals information to find relevant instances for variables of semantic patterns (i and j in the example)

Main ingredient : intervals matching

$\forall z . \forall i . \forall j . i \leq z \leq j \Longrightarrow-2^{\alpha} \leq \operatorname{round}(z)-z \leq 2^{\alpha}$
where $\alpha \equiv \operatorname{ilog}_{2}\left(\max \left(|i|,|j|, 2^{e_{\text {min }}+\text { prec }-1}\right)\right)-$ prec

Main steps to handle rounding properties

1. annotate them with a mix of syntactic and semantic triggers
2. use generic E-matching with syntactic triggers
3. use intervals matching with semantic triggers and compute upper/lower bounds for terms (on demands)
4. generate ground instances
5. simplify instances (eg. 2^{α} in the axiom will reduce to a constant since i and j will be instantiated by constants)

Evaluation : benchmarks \& solvers

307 VCs	C	(S. Boldo, C. Marché)	\forall, \exists
1980 VCs	SPARK	(AdaCore)	\forall, \exists
20035 VCs	SMTLIB2	(Wintersteiger Unsat)	\forall, \exists-Free
114 VCs	SMTLIB2	(Griggio Unsat+Unknown)	\forall, \exists-Free

- We are interested in showing unsatisfiability / validity
- Alt-Ergo without FPA reasoning does not prove any VC of these benchmarks

Evaluation : benchmarks \& solvers

- Alt-Ergo : Axiomatic FPA (+ eventually other axioms for C and SPARK VCs) + rounding properties
- Z3 : pure QF_FP for SMT-benchmarks, a combination of FP with other theories and quantified axioms for C and SPARK
- Gappa : ${ }^{1}$ Axioms of Layer 1, and other quantified axioms are instantiated (best effort), and then abstracted. Non arithmetic constructs are also abstracted
- MS+A and MS+B: like Z3, but quantified axioms are instantiated (best effort) and then abstracted
(See more details in the paper)

1. our approach is inspired by Gappa

Results: C benchmarks

Time limit $=60$ seconds, \quad Memory limit $=3 \mathrm{~GB}$

	CMP-1		CMP-2		
	AE	Z3	Gappa	MS5+B	MS5+A
proved	194	2	$\mathbf{1 9 9}$	4	2
time	566	<1	$\mathbf{7 8}$	4	<1
	230/307 proved with at least one solver				

- The ACSL specification of the C programs uses Reals
- A combination of FPA with Reals is needed to prove the VCs

Results: SPARK benchmarks

Time limit $=60$ seconds, \quad Memory limit $=3 \mathrm{~GB}$

	CMP-1		CMP-2		
	AE	Z3	Gappa	MS5+B	MS5+A
proved	$\mathbf{8 0 6}$	720	488	170	13
time	3090	4142	305	301	1
	$1136 / 1980$ proved with at least one solver				

- The SPARK specification uses FPA (Z3 performs better compared to C benchs)
- Techniques are "complementary"

Results : Wintersteiger unsat

Time limit $=60$ seconds, \quad Memory limit $=3 \mathrm{~GB}$

	CMP-3	CMP-4	CMP-5		
	AE	Gappa	Z3	MS5+B	MS5+A
proved	19863	18102	$\mathbf{2 0 0 3 5}$	17201	17200
time	876	44	$\mathbf{6 5}$	66	63
$20035 / 20035$ proved with at least one solver					

- We don't prove 172 VCs because the intervals we compute for square root are not accurate

Results: Griggio unsat+unknown

Time limit $=60$ seconds, \quad Memory limit $=3 \mathrm{~GB}$

	CMP-3		CMP-4	CMP-5		
	AE		Gappa	Z3	MS5+B	MS5+A
proved	2		-	$\mathbf{5 0}$	49	5
time	18		-	1337	723	1
$57 / 114$ proved with at least one solver						

- AE's instantiation engine overburdens the SAT solver with plenty of instances from Layer 1, while only some instances and a lot of learning, simplifications and SAT propagations would allow to prove the VCs

Results: Griggio unsat+unknown

Time limit $=60$ seconds, \quad Memory limit $=3 \mathrm{~GB}$

	CMP-3		CMP-4	CMP-5		
	AE	AE+ CDCL	Gappa	Z3	MS5+B	MS5+A
proved	2	37	-	$\mathbf{5 0}$	49	5
time	18	733	-	1337	723	1
$57 / 114$ proved with at least one solver						

- AE's instantiation engine overburdens the SAT solver with plenty of instances from Layer 1, while only some instances and a lot of learning, simplifications and SAT propagations would allow to prove the VCs

Conclusion

Pros

- Good results, in particular on VCs coming from deductive programs verification (C and SPARK)
- The technique is complementary compared to others
- Lightweight and non-intrusive extension. Most of added code is not critical (for soundness)

Cons

- SAT benchs are not in the scope of the method (but not an issue for deductive program verification)

Possible/Further improvements

- Inline/mechanize reasoning about (some) axioms of Layers 1 and/or 2

