
A Three-tier Strategy for Reasoning about

Floating-Point Numbers in SMT

————

Mohamed Iguernlala

————

Joint Work with : Sylvain Conchon, Kailiang Ji, Guillaume
Melquiond, Clément Fumex

(Binary) Floating-Point Arithmetic

I Natural way of approximating Real numbers in computers

I Optimized memory representation and efficient operations

normalized number = (−1)s × (1.m) × 2e−127

2 / 18

FPA pitfalls for common programmers

I What you expect on Reals is not what you get on FP
numbers !

x = 1.0;
y = 1000000000.;
if (x + y > y) printf (”alright!”);
else printf (”ouch!”);

The result of an FP computation may arbitrary diverge from
expected Real value

3 / 18

FPA reasoning

I Mainly investigated in the context of theorem proving,
abstract interpretation, and constraints solving

I Considered only recently in SMT

I An SMT-LIB theory for FPA, based on IEEE 754-2008

I Some effort to design (decision) procedures for FPA

I Some SMT solvers already implement FPA solvers

4 / 18

FPA reasoning in SMT

Bit-blasting (Z3, MathSAT5, SONOLAR)

I circuits encoding (heuristic : reduce FP precision to scale)

Abstract CDCL (MathSAT5)

I CDCL on FP abstract domains

Offline reduction to non-linear RIA (REALIZER+Z3)

I reduction to NRA + rounding operator

I encoding to RIA

I exceptional values not handled !

→ Some FPA proofs are simpler on reals !

→ Combination with other theories ? (eg. Reals)

5 / 18

FPA reasoning in SMT

Bit-blasting (Z3, MathSAT5, SONOLAR)

I circuits encoding (heuristic : reduce FP precision to scale)

Abstract CDCL (MathSAT5)

I CDCL on FP abstract domains

Offline reduction to non-linear RIA (REALIZER+Z3)

I reduction to NRA + rounding operator

I encoding to RIA

I exceptional values not handled !

→ Some FPA proofs are simpler on reals !

→ Combination with other theories ? (eg. Reals)

5 / 18

Our idea : Online/Lazy reduction to NRA

Reasoning about high level aspects of FP operations,
and possibly reducing FP to rounding operations on
reals (as in IEEE-754 standard)

Reasoning about the rounding operator properties

(Non-linear) Real arithmetic reasoning : bounds
inference, terms simplification

6 / 18

Current implementation in Alt-Ergo

E-matching

NRA

CC

SAT Solver

Axioms Goal

equivalence
classes

quantifier instantiation theory reasoning

. . .

7 / 18

Current implementation in Alt-Ergo

 I-matching

E-matching

NRA

CC

SAT Solver

Axiomatic FPA Goal Round properties

L1 L2

L2 L3
bounds

for terms

equivalence
classes

quantifier instantiation theory reasoning

. . .

7 / 18

Our approach on an example

(2.F � u � 10.F ∧ 2.F � v � 10.F) =⇒

(u ⊕ v)− (u + v) ≤ 0.00000096

u and v are simple precision FP variables,

2.F and 10.F are two FP constants,

� is the less-or-equal predicate over FP numbers,

⊕ is FP addition,

x denotes the Real value of an FP expression x

8 / 18

Example : (some) axioms from “Layer 1”

L1-1 ∀z . in range(z) ⇐⇒ −0x1.FFFFFEp127 ≤ z ≤ 0x1.FFFFFEp127

L1-2 ∀m.∀x .∀y .
(is finite(x) ∧ is finite(y) ∧ in range(roundm(x + y))) =⇒

x ⊕m y = roundm(x + y)

L1-3 ∀x .∀y . x � y =⇒∨ is finite(x) ∧ is finite(y)
is infinite(x) ∧ is negative(x) ∧ ¬is nan(y)
is infinite(y) ∧ is positive(y) ∧ ¬is nan(x)

L1-4 ∀x .∀y . (is finite(x) ∧ is finite(y) ∧ x � y) =⇒ x ≤ y

L1-5 ∀x . (is infinite(x) ∨ is nan(x)) =⇒ ¬ is finite(x)

L1-6 ∀x . ¬ (is negative(x) ∧ is positive(x))

Generic axiomatization of FP theory from Why3 [VSTTE’17]

9 / 18

Example : (some) axioms from “Layer 2”

Some mathematical properties about round operator

L2-1 ∀m, i , j , z .
i ≤ z ≤ j =⇒ roundm(i) ≤ roundm(z) ≤ roundm(j)

L2-2 ∀m, i , j , z .
i ≤ z ≤ j =⇒ −2α ≤ roundm(z)− z ≤ 2α

where α ≡ ilog2(max(|i |, |j |, 2emin+prec−1))− prec

→ For single-precision FP, prec = 24 and emin = −149

Challenge : how to efficiently instantiate this kind of axioms in
SMT

10 / 18

Example : (some) axioms from “Layer 2”

Some mathematical properties about round operator

L2-1 ∀m, i , j , z .
i ≤ z ≤ j =⇒ roundm(i) ≤ roundm(z) ≤ roundm(j)

L2-2 ∀m, i , j , z .
i ≤ z ≤ j =⇒ −2α ≤ roundm(z)− z ≤ 2α

where α ≡ ilog2(max(|i |, |j |, 2emin+prec−1))− prec

→ For single-precision FP, prec = 24 and emin = −149

Challenge : how to efficiently instantiate this kind of axioms in
SMT

10 / 18

Our approach on an example (very quickly !)

(2. � u � 10. ∧ 2. � v � 10.)⇒ (u ⊕ v)− (u + v) ≤ 0.00000096

11 / 18

Our approach on an example (very quickly !)

(2. � u � 10. ∧ 2. � v � 10.)⇒ (u ⊕ v)− (u + v) ≤ 0.00000096

11 / 18

Our approach on an example (very quickly !)

(2. � u � 10. ∧ 2. � v � 10.)⇒ (u ⊕ v)− (u + v) ≤ 0.00000096

Layers axioms reasoners deductions

0 H is finite(2.), is finite(10.)

1 L1-3 EM, SAT is finite(u)∨
(is infinite(u) ∧ is negative(u))

1 L1-3 EM, SAT is finite(v)∨
(is infinite(v) ∧ is negative(v))

1 L1-6 EM, SAT is finite(u)

1 L1-6 EM, SAT is finite(v)

1 L1-4 EM, SAT 2 ≤ u

1 L1-4 EM, SAT 2 ≤ v

1 L1-4 EM, SAT u ≤ 10

1 L1-4 EM, SAT v ≤ 10

5 L1-2 EM, SAT in range(◦(u + v))⇒ u ⊕ v = ◦(u + v)

11 / 18

Our approach on an example (very quickly !)

(2. � u � 10. ∧ 2. � v � 10.)⇒ (u ⊕ v)− (u + v) ≤ 0.00000096

L1-3 :∀x .∀y . x � y =⇒
∨ is finite(x) ∧ is finite(y)

is infinite(x) ∧ is negative(x) ∧ ¬is nan(y)
is infinite(y) ∧ is positive(y) ∧ ¬is nan(x)

Layers axioms reasoners deductions

0 H is finite(2.), is finite(10.)

1 L1-3 EM, SAT is finite(u)∨
(is infinite(u) ∧ is negative(u))

1 L1-3 EM, SAT is finite(v)∨
(is infinite(v) ∧ is negative(v))

1 L1-6 EM, SAT is finite(u)

1 L1-6 EM, SAT is finite(v)

1 L1-4 EM, SAT 2 ≤ u

1 L1-4 EM, SAT 2 ≤ v

1 L1-4 EM, SAT u ≤ 10

1 L1-4 EM, SAT v ≤ 10

5 L1-2 EM, SAT in range(◦(u + v))⇒ u ⊕ v = ◦(u + v)

11 / 18

Our approach on an example (very quickly !)

(2. � u � 10. ∧ 2. � v � 10.)⇒ (u ⊕ v)− (u + v) ≤ 0.00000096

L1-6 : ∀x . ¬ (is negative(x) ∧ is positive(x))

Layers axioms reasoners deductions

0 H

is finite(2.), is finite(10.)

1 L1-3 EM, SAT

is finite(u)∨
(is infinite(u) ∧ is negative(u))

1 L1-3 EM, SAT

is finite(v)∨
(is infinite(v) ∧ is negative(v))

1 L1-6 EM, SAT is finite(u)

1 L1-6 EM, SAT is finite(v)

1 L1-4 EM, SAT 2 ≤ u

1 L1-4 EM, SAT 2 ≤ v

1 L1-4 EM, SAT u ≤ 10

1 L1-4 EM, SAT v ≤ 10

5 L1-2 EM, SAT in range(◦(u + v))⇒ u ⊕ v = ◦(u + v)

11 / 18

Our approach on an example (very quickly !)

(2. � u � 10. ∧ 2. � v � 10.)⇒ (u ⊕ v)− (u + v) ≤ 0.00000096

L1-4 : ∀x .∀y . (is finite(x) ∧ is finite(y) ∧ x � y) =⇒ x ≤ y

Layers axioms reasoners deductions

0 H is finite(2.), is finite(10.)

1 L1-3 EM, SAT is finite(u)∨
(is infinite(u) ∧ is negative(u))

1 L1-3 EM, SAT is finite(v)∨
(is infinite(v) ∧ is negative(v))

1 L1-6 EM, SAT

is finite(u)

1 L1-6 EM, SAT

is finite(v)

1 L1-4 EM, SAT 2 ≤ u

1 L1-4 EM, SAT 2 ≤ v

1 L1-4 EM, SAT u ≤ 10

1 L1-4 EM, SAT v ≤ 10

5 L1-2 EM, SAT in range(◦(u + v))⇒ u ⊕ v = ◦(u + v)

11 / 18

Our approach on an example (very quickly !)

(2. � u � 10. ∧ 2. � v � 10.)⇒ (u ⊕ v)− (u + v) ≤ 0.00000096

L1-2 :
∀m.∀x .∀y . (is finite(x) ∧ is finite(y) ∧ in range(◦m(x + y))) =⇒

x ⊕m y = ◦m(x + y)

Layers axioms reasoners deductions

0 H is finite(2.), is finite(10.)

1 L1-3 EM, SAT is finite(u)∨
(is infinite(u) ∧ is negative(u))

1 L1-3 EM, SAT is finite(v)∨
(is infinite(v) ∧ is negative(v))

1 L1-6 EM, SAT

is finite(u)

1 L1-6 EM, SAT

is finite(v)

1 L1-4 EM, SAT

2 ≤ u

1 L1-4 EM, SAT

2 ≤ v

1 L1-4 EM, SAT

u ≤ 10

1 L1-4 EM, SAT

v ≤ 10

5 L1-2 EM, SAT in range(◦(u + v))⇒ u ⊕ v = ◦(u + v)

11 / 18

Our approach on an example (very quickly !)

(2. � u � 10. ∧ 2. � v � 10.)⇒ (u ⊕ v)− (u + v) ≤ 0.00000096

Layers axioms reasoners deductions

L1-4 EM, SAT

2 ≤ u ≤ 10, 2 ≤ v ≤ 10

L1-2 EM, SAT

in range(◦(u + v))⇒ u ⊕ v = ◦(u + v)

3 NRA u + v ∈ [4; 20]

2 L2-2 EM, IM, SAT −2−20 ≤ ◦(u + v)− (u + v) ≤ 2−20

3 NRA 4− 2−20 ≤ ◦(u + v) ≤ 20 + 2−20

1 + 3 L1-1 EM, SAT, NRA in range(◦(u + v))

SAT u ⊕ v = ◦(u + v)

3 NRA

11 / 18

Our approach on an example (very quickly !)

(2. � u � 10. ∧ 2. � v � 10.)⇒ (u ⊕ v)− (u + v) ≤ 0.00000096

L2-2 : ∀z .∀i .∀j . i ≤ z ≤ j =⇒ −2α ≤ ◦(z)− z ≤ 2α

where α = ilog2(max(|i |, |j |, 2emin+prec−1))− prec

Layers axioms reasoners deductions

L1-4 EM, SAT 2 ≤ u ≤ 10, 2 ≤ v ≤ 10

L1-2 EM, SAT

in range(◦(u + v))⇒ u ⊕ v = ◦(u + v)

3 NRA

u + v ∈ [4; 20]

2 L2-2 EM, IM, SAT −2−20 ≤ ◦(u + v)− (u + v) ≤ 2−20

3 NRA 4− 2−20 ≤ ◦(u + v) ≤ 20 + 2−20

1 + 3 L1-1 EM, SAT, NRA in range(◦(u + v))

SAT u ⊕ v = ◦(u + v)

3 NRA

11 / 18

Our approach on an example (very quickly !)

(2. � u � 10. ∧ 2. � v � 10.)⇒ (u ⊕ v)− (u + v) ≤ 0.00000096

Layers axioms reasoners deductions

L1-4 EM, SAT 2 ≤ u ≤ 10, 2 ≤ v ≤ 10

L1-2 EM, SAT

in range(◦(u + v))⇒ u ⊕ v = ◦(u + v)

3 NRA

u + v ∈ [4; 20]

2 L2-2 EM, IM, SAT

−2−20 ≤ ◦(u + v)− (u + v) ≤ 2−20

3 NRA 4− 2−20 ≤ ◦(u + v) ≤ 20 + 2−20

1 + 3 L1-1 EM, SAT, NRA in range(◦(u + v))

SAT u ⊕ v = ◦(u + v)

3 NRA

11 / 18

Our approach on an example (very quickly !)

(2. � u � 10. ∧ 2. � v � 10.)⇒ (u ⊕ v)− (u + v) ≤ 0.00000096

L1-1 : ∀z . in range(z) ⇐⇒ −0x1.FFFFFEp127 ≤ z ≤ 0x1.FFFFFEp127

Layers axioms reasoners deductions

L1-4 EM, SAT 2 ≤ u ≤ 10, 2 ≤ v ≤ 10

L1-2 EM, SAT

in range(◦(u + v))⇒ u ⊕ v = ◦(u + v)

3 NRA u + v ∈ [4; 20]

2 L2-2 EM, IM, SAT

−2−20 ≤ ◦(u + v)− (u + v) ≤ 2−20

3 NRA

4− 2−20 ≤ ◦(u + v) ≤ 20 + 2−20

1 + 3 L1-1 EM, SAT, NRA in range(◦(u + v))

SAT u ⊕ v = ◦(u + v)

3 NRA

11 / 18

Our approach on an example (very quickly !)

(2. � u � 10. ∧ 2. � v � 10.)⇒ (u ⊕ v)− (u + v) ≤ 0.00000096

Layers axioms reasoners deductions

L1-4 EM, SAT 2 ≤ u ≤ 10, 2 ≤ v ≤ 10

L1-2 EM, SAT

in range(◦(u + v))⇒ u ⊕ v = ◦(u + v)

3 NRA u + v ∈ [4; 20]

2 L2-2 EM, IM, SAT

−2−20 ≤ ◦(u + v)− (u + v) ≤ 2−20

3 NRA 4− 2−20 ≤ ◦(u + v) ≤ 20 + 2−20

1 + 3 L1-1 EM, SAT, NRA

in range(◦(u + v))

SAT u ⊕ v = ◦(u + v)

3 NRA

11 / 18

Our approach on an example (very quickly !)

(2. � u � 10. ∧ 2. � v � 10.)⇒ (u ⊕ v)− (u + v) ≤ 0.00000096

Layers axioms reasoners deductions

L1-4 EM, SAT 2 ≤ u ≤ 10, 2 ≤ v ≤ 10

L1-2 EM, SAT in range(◦(u + v))⇒ u ⊕ v = ◦(u + v)

3 NRA u + v ∈ [4; 20]

2 L2-2 EM, IM, SAT

−2−20 ≤ ◦(u + v)− (u + v) ≤ 2−20

3 NRA 4− 2−20 ≤ ◦(u + v) ≤ 20 + 2−20

1 + 3 L1-1 EM, SAT, NRA in range(◦(u + v))

SAT

u ⊕ v = ◦(u + v)

3 NRA u ⊕ v − (u + v) ≤ 2−20

11 / 18

Our approach on an example (very quickly !)

(2. � u � 10. ∧ 2. � v � 10.)⇒ (u ⊕ v)− (u + v) ≤ 0.00000096

Layers axioms reasoners deductions

L1-4 EM, SAT 2 ≤ u ≤ 10, 2 ≤ v ≤ 10

L1-2 EM, SAT in range(◦(u + v))⇒ u ⊕ v = ◦(u + v)

3 NRA u + v ∈ [4; 20]

2 L2-2 EM, IM, SAT −2−20 ≤ ◦(u + v)− (u + v) ≤ 2−20

3 NRA 4− 2−20 ≤ ◦(u + v) ≤ 20 + 2−20

1 + 3 L1-1 EM, SAT, NRA in range(◦(u + v))

SAT u ⊕ v = ◦(u + v)

3 NRA

u ⊕ v − (u + v) ≤ 2−20 < 0.00000096

11 / 18

Main ingredient : intervals matching

∀z .∀i .∀j . i ≤ z ≤ j =⇒ −2α ≤ round(z)− z ≤ 2α

where α ≡ ilog2(max(|i |, |j |, 2emin+prec−1))− prec

————

12 / 18

Main ingredient : intervals matching

∀z .∀i .∀j . i ≤ z ≤ j =⇒ −2α ≤ round(z)− z ≤ 2α

where α ≡ ilog2(max(|i |, |j |, 2emin+prec−1))− prec

————

I To handle universally quantified formulas, techniques based on
matching need patterns (that cover all quantified variables)

(eg. {round(z), i , j} or {round(z), abs(i), abs(j))}

I Syntactic patterns are not well suited to instantiate axioms
about rounding properties

12 / 18

Main ingredient : intervals matching

∀z .∀i .∀j . i ≤ z ≤ j =⇒ −2α ≤ round(z)− z ≤ 2α

where α ≡ ilog2(max(|i |, |j |, 2emin+prec−1))− prec

————

I To handle universally quantified formulas, techniques based on
matching need patterns (that cover all quantified variables)

(eg. {round(z), i , j} or {round(z), abs(i), abs(j))}

I Syntactic patterns are not well suited to instantiate axioms
about rounding properties

12 / 18

Main ingredient : intervals matching

∀z .∀i .∀j . i ≤ z ≤ j =⇒ −2α ≤ round(z)− z ≤ 2α

where α ≡ ilog2(max(|i |, |j |, 2emin+prec−1))− prec

————

Solution :

I Use a mix of syntactic and semantic patterns to cover
universally quantified variables

(eg. { round(z) , z ∈ [i , j] })

I Use intervals information to find relevant instances for
variables of semantic patterns (i and j in the example)

12 / 18

Main ingredient : intervals matching

∀z .∀i .∀j . i ≤ z ≤ j =⇒ −2α ≤ round(z)− z ≤ 2α

where α ≡ ilog2(max(|i |, |j |, 2emin+prec−1))− prec

————

Main steps to handle rounding properties

1. annotate them with a mix of syntactic and semantic triggers

2. use generic E-matching with syntactic triggers

3. use intervals matching with semantic triggers and compute
upper/lower bounds for terms (on demands)

4. generate ground instances

5. simplify instances (eg. 2α in the axiom will reduce to a
constant since i and j will be instantiated by constants)

12 / 18

Evaluation : benchmarks & solvers

307 VCs C (S. Boldo, C. Marché) ∀, ∃
1980 VCs SPARK (AdaCore) ∀, ∃

20035 VCs SMTLIB2 (Wintersteiger Unsat) ∀, ∃-Free

114 VCs SMTLIB2 (Griggio Unsat+Unknown) ∀, ∃-Free

I We are interested in showing unsatisfiability / validity

I Alt-Ergo without FPA reasoning does not prove any VC of
these benchmarks

13 / 18

Evaluation : benchmarks & solvers

I Alt-Ergo : Axiomatic FPA (+ eventually other axioms for C
and SPARK VCs) + rounding properties

I Z3 : pure QF FP for SMT-benchmarks, a combination of FP
with other theories and quantified axioms for C and SPARK

I Gappa : 1 Axioms of Layer 1, and other quantified axioms are
instantiated (best effort), and then abstracted. Non arithmetic
constructs are also abstracted

I MS+A and MS+B : like Z3, but quantified axioms are
instantiated (best effort) and then abstracted

(See more details in the paper)

1. our approach is inspired by Gappa
13 / 18

Results : C benchmarks

Time limit = 60 seconds, Memory limit = 3 GB

CMP-1 CMP-2

AE Z3 Gappa MS5+B MS5+A

proved 194 2 199 4 2

time 566 < 1 78 4 < 1

230/307 proved with at least one solver

I The ACSL specification of the C programs uses Reals

I A combination of FPA with Reals is needed to prove the VCs

14 / 18

Results : SPARK benchmarks

Time limit = 60 seconds, Memory limit = 3 GB

CMP-1 CMP-2

AE Z3 Gappa MS5+B MS5+A

proved 806 720 488 170 13

time 3090 4142 305 301 1

1136/1980 proved with at least one solver

I The SPARK specification uses FPA (Z3 performs better
compared to C benchs)

I Techniques are “complementary“

15 / 18

Results : Wintersteiger unsat

Time limit = 60 seconds, Memory limit = 3 GB

CMP-3 CMP-4 CMP-5

AE Gappa Z3 MS5+B MS5+A

proved 19863 18102 20035 17201 17200

time 876 44 65 66 63

20035/20035 proved with at least one solver

I We don’t prove 172 VCs because the intervals we compute for
square root are not accurate

16 / 18

Results : Griggio unsat+unknown

Time limit = 60 seconds, Memory limit = 3 GB

CMP-3 CMP-4 CMP-5

AE Gappa Z3 MS5+B MS5+A

proved 2 - 50 49 5

time 18 - 1337 723 1

57/114 proved with at least one solver

I AE’s instantiation engine overburdens the SAT solver with
plenty of instances from Layer 1, while only some instances
and a lot of learning, simplifications and SAT propagations
would allow to prove the VCs

17 / 18

Results : Griggio unsat+unknown

Time limit = 60 seconds, Memory limit = 3 GB

CMP-3 CMP-4 CMP-5

AE AE+ Gappa Z3 MS5+B MS5+A
CDCL

proved 2 37 - 50 49 5

time 18 733 - 1337 723 1

57/114 proved with at least one solver

I AE’s instantiation engine overburdens the SAT solver with
plenty of instances from Layer 1, while only some instances
and a lot of learning, simplifications and SAT propagations
would allow to prove the VCs

17 / 18

Conclusion

Pros

I Good results, in particular on VCs coming from deductive
programs verification (C and SPARK)

I The technique is complementary compared to others

I Lightweight and non-intrusive extension. Most of added code
is not critical (for soundness)

Cons

I SAT benchs are not in the scope of the method (but not an
issue for deductive program verification)

Possible/Further improvements

I Inline/mechanize reasoning about (some) axioms of Layers 1
and/or 2

18 / 18

