A Reduced Product of Absolute and Relative Error Bounds of Floating-point Analysis

Maxime Jacquemin<sup>1</sup> Sylvie Putot<sup>2</sup> Franck Védrine<sup>1</sup>

<sup>1</sup>CEA, List, Software Reliability and Security Laboratory, PC 174 91191 Gif-Sur-Yvette France

<sup>2</sup>LIX, CNRS and École Polytechnique, Palaiseau, France.

RAIM - November 14, 2018







Goal



Goal



#### Overview

**Program Verification** 

Motivation

Modeling Rounding Errors

Abstraction

Experimental Evaluations

Conclusion & Future Works

| х  | =  | ra | nd | om | (1 | ,3) |   | ; |
|----|----|----|----|----|----|-----|---|---|
| у  | =  | ra | nd | om | (1 | ,3) |   | ; |
| z  | =  | x  | *  | у  | ;  |     |   |   |
|    |    |    |    |    |    |     |   |   |
| if | (  | z  | <= | 2  | )  |     |   |   |
|    | r  | =  | z  | *  | z  | ;   |   |   |
|    |    |    |    |    |    |     |   |   |
| el | se |    |    |    |    |     |   |   |
|    | r  | =  | 4  | -  | z  | ;   |   |   |
|    |    |    |    |    |    |     |   |   |
| as | ຮນ | me | (r | <  | =  | 4)  | ; |   |
| as | su | me | (r | <  | >  | -1) |   | ; |

| x = random(1,3); $x = 1$<br>y = random(1,3); $y = 2$ | $\begin{array}{c} x = 3 \\ y = 2 \end{array}$ |
|------------------------------------------------------|-----------------------------------------------|
| z = x * y ;                                          |                                               |
| if (z <= 2)<br>r = z * z ;                           |                                               |
| else<br>r = 4 - z ;                                  |                                               |
| assume(r <= 4) ;<br>assume(r <> -1) ;                |                                               |

| x = random(1,3) | ; | x = 1                | <i>x</i> = 3    |
|-----------------|---|----------------------|-----------------|
| y = random(1,3) | ; | y = 2                | y = 2           |
| z = x * y ;     |   | $z = 1 \times 2 = 2$ | $z=3\times 2=6$ |
|                 |   |                      |                 |
| if (z <= 2)     |   |                      |                 |
| r = z * z ;     |   |                      |                 |
|                 |   |                      |                 |

else

r = 4 - z ;

assume(r <= 4); assume(r <> -1);

| <pre>x = random(1,3) ;</pre> | x = 1                                               | x = 3                            |
|------------------------------|-----------------------------------------------------|----------------------------------|
| y = random(1,3) ;            | y = 2                                               | y = 2                            |
| z = x * y ;                  | $z = 1 \times 2 = 2$                                | $z = 3 \times 2 = 6$             |
| if (z <= 2)<br>r = z * z ;   | $z \le 2 \Leftrightarrow True$ $r = 2 \times 2 = 4$ | $z \leq 2 \Leftrightarrow False$ |

else

r = 4 - z ;

r = 4 - 6 = -2

assume(r <= 4) ; assume(r <> -1) ;

| <pre>x = random(1,3) ;<br/>y = random(1,3) ;<br/>z = x * y ;</pre> | x = 1<br>y = 2<br>$z = 1 \times 2 = 2$              | x = 3<br>y = 2<br>$z = 3 \times 2 = 6$ |
|--------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------|
| if (z <= 2)<br>r = z * z ;                                         | $z \le 2 \Leftrightarrow True$ $r = 2 \times 2 = 4$ | $z \leq 2 \Leftrightarrow False$       |
| else<br>r = 4 - z ;                                                |                                                     | r=4-6=-2                               |
|                                                                    | $\sim$ $< 1 \sim$ T                                 | $\mathbf{T}$                           |

Concrete semantic

| <pre>x = random(1,3);</pre>           | $x = \{1, 2, 3\}$                                                                                                                                                 |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| y = random(1,3);                      | $y = \{1, 2, 3\}$                                                                                                                                                 |
| z = x * y;                            | $z = \{1, 2, 3, 4, 6, 9\}$                                                                                                                                        |
| if (z <= 2)<br>r = z * z ;            | $z \le 2 \Rightarrow z = \{1, 2\}$ $r = \{1, 4\}$                                                                                                                 |
| else                                  | $z > 2 \Rightarrow z = \{3, 4, 6, 9\}$                                                                                                                            |
| r = 4 - z ;                           | $r = \{-5, -2, 0, 1\}$                                                                                                                                            |
| assume(r <= 4) ;<br>assume(r <> -1) ; | $\begin{aligned} r &= \{-5, -2, 0, 1, 4\} \leq 4 \Leftrightarrow \textit{True} \\ -1 \notin r &= \{-5, -2, 0, 1, 4\} \Leftrightarrow \textit{True} \end{aligned}$ |

Some kind of trouble

- Concret semantic is not always decidable
- When it does, it is really costly
- Need of a simplification!

Abstract interpretation

- Abstract the set of possible value by something simpler:
- Do not miss any possible concrete value
- Accept to contain infeasable values
- Redefine the semantics for the abstraction

Abstract semantic: intervals

Abstract semantic: intervals

x = random(1,3); 
$$x = [1..3]$$
  
y = random(1,3);  $y = [1..3]$   
z = x \* y;  $z = [1..3] \times [1..3] = [1..9]$ 

#### else

r = 4 - z;

assume(r <= 4) ; assume(r <> -1) ;

;

Abstract semantic: intervals

 $\begin{array}{rrrr} \text{if} & (z & <= 2) & z \leq 2 \Rightarrow z = [1..2] \\ r & = z & * z & ; & r = [1..2] \times [1..2] = [1..4] \end{array}$ 

else

r = 4 - z;

assume(r <= 4); assume(r <> -1);

Abstract semantic: intervals

assume(r <= 4) ; assume(r <> -1) ;

assume(r <= 4) ;
assume(r <> -1) ;

Abstract semantic: intervals

Abstract semantic: intervals

- Classical methods focused on absolute errors
- Natural errors bounds are on relative errors

Improving absolute errors bounds using reduced product with relative errors bounds

(Value, AbsoluteError, RelativeError)

t = [1, 100] ; t = ([1, 100], 0, 0)x = t \* t ; if (x <= 2.0) r = x ;

(Value, AbsoluteError, RelativeError)

$$t = ([1, 100], 0, 0)$$
  
 $x = ([1, 10^4], \pm 10^{-12}, \pm 10^{-16})$ 

(Value, AbsoluteError, RelativeError)

(Value, AbsoluteError, RelativeError)

AbsoluteError = Value × RelativeError

(Value, AbsoluteError, RelativeError)

AbsoluteError = Value × RelativeError

Rounding to nearest model

$$\operatorname{rnd}(x) = x + \operatorname{ufp}(x)e_x + d_x$$

•  $e_x$  = relative error when rounding to normalized

- $d_x =$  absolute error when rounding to subnormal
- Bounded by the format
  - Simple precision :  $|e_x| \leq 2^{-24}$  and  $|d_x| \leq 2^{-149}$
  - Double precision :  $|e_x| \leq 2^{-53}$  and  $|d_x| \leq 2^{-1075}$

ufp = unit in the first place

#### Errors definitions

Let  $\widetilde{x}$  be an approximation of  $x \in \mathbb{R}$ , we define:

$$\mathcal{E}_a(x) = \widetilde{x} - x$$
 the absolute error  
 $\mathcal{E}_r(x) = \frac{\widetilde{x} - x}{x}$  the relative error

The relative error is **not** defined if x = 0

#### Elementary rounding error

Let the approximation  $\tilde{x}$  be the result of the rounding operator applied to x. We define the *elementary rounding errors* of x as:

$$\Gamma_a(x) = ufp(x)e_x + d_x$$
 and  $\Gamma_r(x) = rac{ufp(x)e_x + d_x}{x}$ 

#### Arithmetic operations rounding errors

Let  $\widetilde{X} \in \mathbb{F}^k$  be the approximation of  $X \in \mathbb{R}^k$  and  $\widetilde{op}$  be the floating point counterpart of  $op : \mathbb{R}^k \to \mathbb{R}$ . We define:

$$\mathcal{E}_{a}(op(X)) = \widetilde{op}(\widetilde{X}) - op(X)$$
  
 $\mathcal{E}_{r}(op(X)) = rac{\widetilde{op}(\widetilde{X}) - op(X)}{op(X)}$ 

# Correctly rounded operations errors If $\widetilde{op}$ is a *correctly rounded* operation:

$$\mathcal{E}_{a}(op(X)) = op(\widetilde{X}) + \Gamma_{a}(\widetilde{op}(\widetilde{X})) - op(X)$$
$$\mathcal{E}_{r}(op(X)) = \frac{op(\widetilde{X})}{op(X)} (1 + \Gamma_{r}(\widetilde{op}(\widetilde{X}))) - 1$$

#### Propagated values

- Relying on lattice of intervals:
  - Real range x
  - Floating point range  $\tilde{x}$
  - Absolute error range  $\mathcal{E}_a(\mathbf{x})$
  - Relative error range  $\mathcal{E}_r(\mathbf{x})$
- Complete lattice with a componentwise join
- Stable test assumption

#### Transfer functions

- Intervals  $\Rightarrow$  lost of correlations
- Reorganizing terms to reduce variable repetitions

Absolute error of the division

$$\begin{aligned} \mathcal{E}_{a}(\widetilde{x}\div\widetilde{y}) &= (\widetilde{x}\div\widetilde{y}) + \Gamma_{a}(\widetilde{x}\div\widetilde{y}) - (x\div y) \\ &= \frac{y\widetilde{x} - x\widetilde{y}}{y\widetilde{y}} + \Gamma_{a}(\widetilde{x}\div\widetilde{y}) \\ &= \frac{y(x + \mathcal{E}_{a}(x)) - x(y + \mathcal{E}_{a}(y))}{y\widetilde{y}} + \Gamma_{a}(\widetilde{x}\div\widetilde{y}) \\ &= \frac{\mathcal{E}_{a}(x) - x\frac{\mathcal{E}_{a}(y)}{y}}{\widetilde{y}} + \Gamma_{a}(\widetilde{x}\div\widetilde{y}) \end{aligned}$$

Absolute error of the division

$$\begin{aligned} \mathcal{E}_{a}(\widetilde{x}\div\widetilde{y}) &= (\widetilde{x}\div\widetilde{y}) + \Gamma_{a}(\widetilde{x}\div\widetilde{y}) - (x\div y) \\ &= \frac{y\widetilde{x} - x\widetilde{y}}{y\widetilde{y}} + \Gamma_{a}(\widetilde{x}\div\widetilde{y}) \\ &= \frac{y(x + \mathcal{E}_{a}(x)) - x(y + \mathcal{E}_{a}(y))}{y\widetilde{y}} + \Gamma_{a}(\widetilde{x}\div\widetilde{y}) \\ &= \frac{\mathcal{E}_{a}(x) - x\frac{\mathcal{E}_{a}(y)}{y}}{\widetilde{y}} + \Gamma_{a}(\widetilde{x}\div\widetilde{y}) \end{aligned}$$

Absolute error of the division

$$\begin{split} \mathcal{E}_{a}(\widetilde{x}\div\widetilde{y}) &= (\widetilde{x}\div\widetilde{y}) + \Gamma_{a}(\widetilde{x}\div\widetilde{y}) - (x\div y) \\ &= \frac{y\widetilde{x} - x\widetilde{y}}{y\widetilde{y}} + \Gamma_{a}(\widetilde{x}\div\widetilde{y}) \\ &= \frac{y(x + \mathcal{E}_{a}(x)) - x(y + \mathcal{E}_{a}(y))}{y\widetilde{y}} + \Gamma_{a}(\widetilde{x}\div\widetilde{y}) \\ &= \frac{\mathcal{E}_{a}(x) - x\frac{\mathcal{E}_{a}(y)}{y}}{\widetilde{y}} + \Gamma_{a}(\widetilde{x}\div\widetilde{y}) \\ &= \frac{\mathcal{E}_{a}(x) - x\mathcal{E}_{r}(y)}{\widetilde{y}} + \Gamma_{a}(\widetilde{x}\div\widetilde{y}) \end{split}$$

#### Reduced product

Propagating the relative error is useful in two ways :

• After each z = op(x, y), we can perform a reduction:

$$\begin{cases} \mathcal{E}_{a}(\boldsymbol{z}) := \mathcal{E}_{a}(\boldsymbol{z}) \cap \mathcal{E}_{r}(\boldsymbol{z}) \boldsymbol{z} \\ \mathcal{E}_{r}(\boldsymbol{z}) := \mathcal{E}_{r}(\boldsymbol{z}) \cap \frac{\mathcal{E}_{a}(\boldsymbol{z})}{\boldsymbol{z}} \text{ whenever } \boldsymbol{0} \not\in \boldsymbol{z} \end{cases}$$

Absolute error of some operations naturally involves the relative errors of their operands:

$$\mathcal{E}_{a}(\mathbf{x} \div \mathbf{y}) = rac{\mathcal{E}_{a}(\mathbf{x}) - \mathbf{x}\mathcal{E}_{r}(\mathbf{y})}{\widetilde{\mathbf{y}}} + \Gamma_{a}(\widetilde{\mathbf{x}} \div \widetilde{\mathbf{y}})$$

Example Compute error bounds for  $\frac{t}{t+1}$  with t := ([0,999], 0, 0)

Example  
Compute error bounds for 
$$\frac{t}{t+1}$$
 with  $t := ([0,999], 0, 0)$ 

1. Compute error bounds for t + 1

$$\begin{aligned} \mathcal{E}_{a}(t+1) &= \mathcal{E}_{a}(t) + \mathcal{E}_{a}(1) + \Gamma_{a}(\tilde{t}+1) = [-5.68e^{-14}, 5, 68e^{-14}] \\ \mathcal{E}_{r}(t+1) &= \underbrace{\left(\frac{\mathcal{E}_{r}(t) - \mathcal{E}_{r}(1)}{1 + 1/t} + \mathcal{E}_{r}(1)\right)(1 + \Gamma_{r}(\tilde{t}+1))}_{= [-1.1e^{-16}, 1.1e^{-16}] \end{aligned}$$

.

-

Example  
Compute error bounds for 
$$\frac{t}{t+1}$$
 with  $t := ([0, 999], 0, 0)$ 

2. Compute absolute error bounds for  $\frac{t}{t+1}$ 

$$\mathcal{E}_{a}\left(\frac{\mathbf{t}}{\mathbf{t}+1}\right) = \frac{\mathbf{t}\mathcal{E}_{r}(\mathbf{t}+1)}{\mathbf{t}+1} + \Gamma_{a}\left(\frac{\widetilde{\mathbf{t}}}{\widetilde{\mathbf{t}}+1}\right) = [-1.67e^{-13}, 1.67e^{-13}]$$
$$\left([-5.68e^{-11}, 5.68e^{-11}] \text{ without reduced product}\right)$$

Example  
Compute error bounds for 
$$\frac{t}{t+1}$$
 with  $t := ([0, 999], 0, 0)$ 

3. Compute relative error bounds for  $\frac{t}{t+1}$ 

$$\begin{aligned} \mathcal{E}_r\left(\frac{\mathbf{t}}{\mathbf{t}+1}\right) &= \frac{\mathcal{E}_r(\mathbf{t})+1}{\mathcal{E}_r(\mathbf{t}+1)+1} \left(1+\Gamma_r\left(\frac{\widetilde{\mathbf{t}}}{\widetilde{\mathbf{t}}+1}\right)\right) - 1\\ &= \frac{1}{\left[-1.1e^{-16}, 1.1e^{-16}\right]+1} \left(1+\Gamma_r\left(\frac{\widetilde{\mathbf{t}}}{\widetilde{\mathbf{t}}+1}\right)\right) - 1\end{aligned}$$

Bounded by  $\left[-1,1\right]$  because of the subnormals near 0

#### Handling conditional statements

Let  $\gamma(x_1, \dots, x_n)$  be a conditional expression. The components of the abstract value  $\mathbf{x}_{\gamma}$  of variable x after the interpretation of conditional  $\gamma$  are obtained as following:

- Values ranges computed by classical backward propagation
- ▶ Relative error bounds unchanged:  $\mathcal{E}_r(\mathbf{x}_{\gamma}) = \mathcal{E}_r(\mathbf{x})$
- ► Absolute error bounds reduced:  $\mathcal{E}_a(\mathbf{x}_\gamma) = \mathcal{E}_a(\mathbf{x}) \cap \mathbf{x}_\gamma \mathcal{E}_r(\mathbf{x})$

# Experimental evaluations



- Implemented in the abstract domain Numerors of the Eva plugin of Frama-C (available at the next release)
- Evaluation against state of the art tools:
  - Fluctuat
  - FPTaylor
  - Daisy
- Compared using FPBench<sup>1</sup> benchmark and some new benchmarks

<sup>&</sup>lt;sup>1</sup>http://fpbench.org

# Experimental evaluations: Absolute errors



| Name                 | Under-   | Numerors  | Fluctuat  | Fluctuat | Daisy    | Daisy     | FPTaylor |
|----------------------|----------|-----------|-----------|----------|----------|-----------|----------|
|                      | Approx   |           | Intervals | Affine   | 1        | 2         |          |
| log_approx           | -        | 6.25e-14  | 3.56e-11  | 3.56e-11 | -        | -         | -        |
| conditional_ex       | -        | 2.22e-16  | 9.09e-13  | 9.09e-13 | -        | -         | 9.09e-13 |
| conditional_1        | -        | 8.43e-13  | 6.82e-12  | 6.82e-12 | -        | -         | 2.09e-11 |
| sqrt_1               | 2.11e-16 | 5.51e-15  | 3.72e-14  | 3.38e-14 | 3.72e-14 | 4.52e-16  | 2.75e-16 |
| complex_sqrt         | 5.00e-16 | 1.29e-15  | 3.93e-15  | 2.52e-15 | 3.92e-15 | 1.89e-15  | 5.70e-16 |
| kepler0              | 2.42e-13 | 3.63e-13  | 3.63e-13  | 3.63e-13 | 3.63e-13 | 7.15e-13  | 3.18e-13 |
| intro_example        | 1.65e-16 | 1.68e-13  | 5.68e-11  | 5.67e-11 | 5.68e-11 | 2.52e-16  | 1.67e-16 |
| sec4_example         | 3.25e-15 | 6.35e-11  | 1.16e-09  | 1.16e-09 | 1.16e-09 | 7.00e-14  | 3.73e-13 |
| test02_sum8          | 4.00e-15 | 6.22e-15  | 6.22e-15  | 6.22e-15 | 6.22e-15 | 9.55e-15  | 6.22e-15 |
| test05_nonlin1_r4    | 1.32e-12 | 2.78e-07  | 1.67e-06  | 1.67e-06 | 1.67e-06 | 5.93e-11  | 2.21e-09 |
| test05_nonlin1_test2 | 8.29e-17 | 8.33e-17  | 8.33e-17  | 8.33e-17 | 8.33e-17 | 1.39e-16  | 8.33e-17 |
| doppler1             | 6.13e-14 | 1.62e-13  | 3.45e-13  | 3.45e-13 | 3.91e-13 | 1.74e-13  | 9.91e-14 |
| doppler2             | 1.14e-13 | 3.27e-13  | 8.78e-13  | 8.78e-13 | 9.78e-13 | 3.18e-13  | 1.84e-13 |
| doppler3             | 4.16e-14 | 8.50e-14  | 1.36e-13  | 1.36e-13 | 1.60e-13 | 9.13e-14  | 5.70e-14 |
| rigidBody1           | 1.79e-13 | 2.40e-13  | 2.40e-13  | 2.40e-13 | 2.40e-13 | 5.08e-13  | 2.13e-13 |
| rigidBody2           | 1.81e-11 | 2.31e-11  | 2.31e-11  | 2.31e-11 | 2.31e-11 | 6.32e-11  | 2.27e-11 |
| turbine1             | 4.30e-15 | 4.73e-14  | 6.04e-14  | 5.76e-14 | 6.04e-14 | 2.80e-14  | 1.24e-14 |
| turbine2             | 4.41e-15 | 8.57e-15  | 8.57e-15  | 8.54e-15 | 8.57e-15 | 1.71e-14  | 7.38e-15 |
| turbine3             | 3.22e-15 | 3.85e-14  | 4.72e-14  | 4.54e-14 | 4.72e-14 | 1.65e-14  | 7.15e-15 |
| verhulst             | 1.70e-16 | 3.77e-16  | 3.77e-16  | 3.00e-16 | 3.80e-16 | 4.21e-16  | 1.79e-16 |
| predatorPrey         | 8.79e-17 | 1.40e-16  | 1.40e-16  | 1.38e-16 | 1.41e-16 | 2.27e-16  | 1.01e-16 |
| carbonGas            | 3.13e-09 | 2.00e-08  | 2.00e-08  | 1.58e-08 | 2.06e-08 | 1.03e-08  | 4.96e-09 |
|                      |          |           |           |          |          |           |          |
|                      | Numerors | Fluctuat  | Fluctuat  | Daisy    | Daisy    | Daisy     | FPTaylor |
|                      |          | Intervals | Affine    | 1        | 2        | 3         | -        |
| Times                | 0.271    | 0.059     | 0.049     | 4.220    | 652.062  | 16056.987 | 197.774  |

# Experimental evaluations: Relative errors



| Name                 | Under-   | Numerors  | Posteriori | Daisy    | Daisy    | Daisy     | FPTaylor |
|----------------------|----------|-----------|------------|----------|----------|-----------|----------|
|                      | Approx   |           |            | 1        | 2        | 3         |          |
| log_approx           | -        | $\infty$  | $\infty$   | -        | -        | -         | -        |
| conditional_ex       | -        | 1.11e-16  | 9.09e-13   | -        | -        | -         | 1.13e-16 |
| conditional_1        | -        | 8.94e-16  | 3.41e-12   | -        | -        | -         | 7.22e-16 |
| sqrt_1               | 3.42e-16 | 6.61e-16  | 6.83e-12   | 1.10e-12 | 1.02e-15 | $\infty$  | 4.26e-16 |
| complex_sqrt         | 2.04e-16 | 4.98e-16  | 8.64e-14   | 4.01e-15 | 1.94e-15 | $\infty$  | 2.64e-16 |
| kepler0              | 3.65e-16 | 1.20e-15  | 1.20e-15   | 1.20e-15 | 2.13e-15 | 1.06e-15  | 5.71e-16 |
| intro_example        | 1.87e-16 | 1.00      | $\infty$   | $\infty$ | $\infty$ | $\infty$  | $\infty$ |
| sec4_example         | 6.52e-15 | 1.40e-13  | 8.71e-06   | 8.71e-06 | 3.60e-13 | 2.34e-13  | 6.65e-12 |
| test02_sum8          | 3.42e-16 | 5.94e-16  | 7.77e-16   | 7.77e-16 | 1.19e-15 | 7.73e-16  | 4.82e-16 |
| test05_nonlin1_r4    | 2.63e-12 | 5.55e-12  | 5.00e-01   | 5.00e-01 | 2.07e-10 | 1.68e-05  | 3.46e-06 |
| test05_nonlin1_test2 | 1.66e-16 | 2.26e-16  | 2.50e-16   | 2.50e-16 | 4.17e-16 | 2.96e-16  | 1.69e-16 |
| doppler1             | 6.70e-16 | 1.10e-15  | 1.17e-11   | 1.33e-11 | 5.91e-12 | 1.26e-15  | 9.69e-16 |
| doppler2             | 7.17e-16 | 1.21e-15  | 4.62e-11   | 5.14e-11 | 1.67e-11 | 1.37e-15  | 9.13e-16 |
| doppler3             | 5.63e-16 | 9.75e-16  | 3.11e-13   | 3.65e-13 | 1.82e-13 | 1.14e-15  | 7.36e-16 |
| rigidBody1           | 3.44e-16 | 7.79e-16  | 1.04e-12   | 1.04e-12 | 2.21e-12 | 9.76e-16  | 4.39e-16 |
| rigidBody2           | 4.84e-16 | 9.65e-16  | 1.32e-15   | 1.32e-15 | 3.50e-15 | 1.17e-15  | 6.27e-16 |
| turbine1             | 4.21e-16 | 3.05e-14  | 3.90e-14   | 3.90e-14 | 1.41e-14 | 1.75e-15  | 7.95e-16 |
| turbine2             | 2.30e-16 | 4.98e-16  | 4.98e-16   | 4.98e-16 | 9.23e-16 | 6.92e-16  | 3.97e-16 |
| turbine3             | 3.53e-16 | 7.50e-14  | 1.01e-13   | 1.01e-13 | 2.91e-14 | 6.51e-15  | 2.40e-15 |
| verhulst             | 2.26e-16 | 3.75e-16  | 1.20e-15   | 1.21e-15 | 1.16e-15 | 4.59e-16  | 2.41e-16 |
| predatorPrey         | 3.12e-16 | 4.82e-16  | 3.76e-15   | 3.77e-15 | 6.09e-15 | 6.87e-16  | 3.58e-16 |
| carbonGas            | 3.39e-16 | 7.16e-16  | 9.52e-15   | 9.80e-15 | 2.40e-15 | 8.11e-16  | 7.67e-16 |
| -                    |          |           |            |          |          |           |          |
|                      | Numerors | Fluctuat  | Fluctuat   | Daisy    | Daisy    | Daisy     | FPTaylor |
|                      |          | Intervals | Affine     | 1        | 2        | 3         |          |
| Times                | 0.271    | 0.059     | 0.049      | 4.220    | 652.062  | 16056.987 | 197.774  |

# Conclusion & Future Works

- Interval-based reduced product of absolute and relative errors
- Low additional cost Great enhancement
- Next step: using relational abstraction
- Going further: local subdivisions, tracking cancellations