
TOWARDS CORRECTLY ROUNDED
MIXED-RADIX IEEE754 ARITHMETIC

RAIM 2018 – Gif-sur-Yvette, France
November 12th, 2018

Clothilde Jeangoudoux and Christoph Lauter
clothilde.jeangoudoux@lip6.fr, christoph.lauter@lip6.fr

Sorbonne Université, CNRS, LIP6 UMR 7606

Motivations

int main () {
_Decimal128 a = 0.1D;
float b = 10.25;
_Decimal64 c = -1.025D;
double d;
d = a * b + c;

return 0;
}

What we would like to get:
Something close to d = 0.0

What we actually get:

Nothing!

Compilation with gcc 5.4 yields:
error: can't mix operands of decimal
float and other float types

Let’s force it:

the result is d = 0x1p − 52 ≈ 2.2204 · 10−16

as a reminder, the smallest subnormal number
is 0x1p − 1074 ≈ 4.9407 · 10−324

1/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Motivations

int main () {
_Decimal128 a = 0.1D;
float b = 10.25;
_Decimal64 c = -1.025D;
double d;
d = a * b + c;

return 0;
}

What we would like to get:
Something close to d = 0.0

What we actually get:

Nothing!

Compilation with gcc 5.4 yields:
error: can't mix operands of decimal
float and other float types

Let’s force it:

the result is d = 0x1p − 52 ≈ 2.2204 · 10−16

as a reminder, the smallest subnormal number
is 0x1p − 1074 ≈ 4.9407 · 10−324

1/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Motivations

int main () {
_Decimal128 a = 0.1D;
float b = 10.25;
_Decimal64 c = -1.025D;
double d;
d = a * b + c;

return 0;
}

What we would like to get:
Something close to d = 0.0

What we actually get:

Nothing!

Compilation with gcc 5.4 yields:
error: can't mix operands of decimal
float and other float types

Let’s force it:

the result is d = 0x1p − 52 ≈ 2.2204 · 10−16

as a reminder, the smallest subnormal number
is 0x1p − 1074 ≈ 4.9407 · 10−324

1/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Motivations

int main () {
_Decimal128 a = 0.1D;
float b = 10.25;
_Decimal64 c = -1.025D;
double d;
d = a * b + c;

return 0;
}

What we would like to get:
Something close to d = 0.0

What we actually get:

Nothing!

Compilation with gcc 5.4 yields:
error: can't mix operands of decimal
float and other float types

Let’s force it:

the result is d = 0x1p − 52 ≈ 2.2204 · 10−16

as a reminder, the smallest subnormal number
is 0x1p − 1074 ≈ 4.9407 · 10−324

1/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Motivations

int main () {
_Decimal128 a = 0.1D;
float b = 10.25;
_Decimal64 c = -1.025D;
double d;

d = ((double) a) * b +
((double) c);

return 0;
}

What we would like to get:
Something close to d = 0.0

What we actually get:

Nothing!

Compilation with gcc 5.4 yields:
error: can't mix operands of decimal
float and other float types

Let’s force it:

the result is d = 0x1p − 52 ≈ 2.2204 · 10−16

as a reminder, the smallest subnormal number
is 0x1p − 1074 ≈ 4.9407 · 10−324

1/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Motivations

int main () {
_Decimal128 a = 0.1D;
float b = 10.25;
_Decimal64 c = -1.025D;
double d;

d = ((double) a) * b +
((double) c);

return 0;
}

What we would like to get:
Something close to d = 0.0

What we actually get:

Nothing!

Compilation with gcc 5.4 yields:
error: can't mix operands of decimal
float and other float types

Let’s force it:

the result is d = 0x1p − 52 ≈ 2.2204 · 10−16

as a reminder, the smallest subnormal number
is 0x1p − 1074 ≈ 4.9407 · 10−324

1/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Motivations

int main () {
_Decimal128 a = 0.1D;
float b = 10.25;
_Decimal64 c = -1.025D;
double d;

d = ((double) a) * b +
((double) c);

return 0;
}

What we would like to get:
Something close to d = 0.0

What we actually get:

Nothing!

Compilation with gcc 5.4 yields:
error: can't mix operands of decimal
float and other float types

Let’s force it:

the result is d = 0x1p − 52 ≈ 2.2204 · 10−16

as a reminder, the smallest subnormal number
is 0x1p − 1074 ≈ 4.9407 · 10−324

1/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

IEEE 754-2008 - FP formats

Binary format
(−1)s · 2E · m

s E + bias m

1 bit WE bits p − 1 bits

Example, binary formats:

significand: 2k2−1 ≤ m ≤ 2k2 − 1

exponent: Emin ≤ E ≤ Emax
(with subnormals)

with k2 = p.

Decimal format
(−1)s · 10F · n

s F + bias n

1 bit w + 5 bits 10× J bits

Example, decimal{k} format:

significand: 1 ≤ n ≤ 10k10 − 1

exponent: Fmin ≤ F ≤ Fmax

binary BID encoding
with k10 = 9× k/32− 2.

2/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

IEEE 754-2008 - Rounding Modes

FP Number

0 · · ·
Midpoint

x

RN(x)
RZ (x)
RD(x)

RU(x)

y

RN(x)
RZ (x)
RD(x)

RU(x)

3/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

IEEE 754-2008 - Rounding Modes

FP Number

0 · · ·
Midpoint x

RN(x)
RZ (x)
RD(x)

RU(x)

y

RN(x)
RZ (x)
RD(x)

RU(x)

3/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

IEEE 754-2008 - Rounding Modes

FP Number

0 · · ·
Midpoint x

RN(x)
RZ (x)
RD(x)

RU(x)

y

RN(x)
RZ (x)
RD(x)

RU(x)

3/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

IEEE 754-2008 - Rounding Modes

FP Number

0 · · ·
Midpoint

x

RN(x)
RZ (x)
RD(x)

RU(x)

y

RN(x)
RZ (x)
RD(x)

RU(x)

3/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

IEEE 754-2008 - Rounding Modes

FP Number

0 · · ·
Midpoint

x

RN(x)
RZ (x)
RD(x)

RU(x)

y

RN(x)
RZ (x)
RD(x)

RU(x)

3/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

IEEE 754-2008 - Arithmetic Operations

Definitions and properties

basic arithmetic operations (+,×,÷,FMA...)

exceptions and flags

heterogenous operations
same base, different format/precision
e.g. binary32 = binary32 × binary64

Goal: mixed-radix operations

Enrich the IEEE 754-2008 standard with heterogenous operations in base 2 and 10.

4/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

IEEE 754-2008 - Arithmetic Operations

Definitions and properties

basic arithmetic operations (+,×,÷,FMA...)

exceptions and flags

heterogenous operations
same base, different format/precision
e.g. binary32 = binary32 × binary64

Goal: mixed-radix operations

Enrich the IEEE 754-2008 standard with heterogenous operations in base 2 and 10.

4/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Designing Mixed-Radix Operations

Considered formats

Binary: binary32, binary64, binary128

Decimal: binary64, binary128

Considering all basic operations: ≈ 1120 operations

Goal: Automatically generate mixed-radix basic operations

Compromise between efficiency and implementation effort.

5/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Designing Mixed-Radix Operations

Considered formats

Binary: binary32, binary64, binary128

Decimal: binary64, binary128

Considering all basic operations: ≈ 1120 operations

Goal: Automatically generate mixed-radix basic operations

Compromise between efficiency and implementation effort.

5/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Designing Mixed-Radix Operations

Definition: Fused Multiply and Add

FMA(a, b, c) = ◦(a × b + c) where ◦ ∈ {RN, RZ, RU, RD}

Correctly Rounded Mixed Radix FMA

correctly rounded mixed-radix +,−,×
correctly rounded mixed-radix ÷,

√

assuming we can represent the midpoint between two FP-numbers, f

the rounding of ◦k

(
x
y

)
boilds down to computing the sign of y × f − x

the rounding of ◦k
(√

x
)

boilds down to computing the sign of f × f − x

6/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Designing Mixed-Radix Operations

Definition: Fused Multiply and Add

FMA(a, b, c) = ◦(a × b + c) where ◦ ∈ {RN, RZ, RU, RD}

Correctly Rounded Mixed Radix FMA

correctly rounded mixed-radix +,−,×
correctly rounded mixed-radix ÷,

√

assuming we can represent the midpoint between two FP-numbers, f

the rounding of ◦k

(
x
y

)
boilds down to computing the sign of y × f − x

the rounding of ◦k
(√

x
)

boilds down to computing the sign of f × f − x

6/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Designing Mixed-Radix Operations

Definition: Fused Multiply and Add

FMA(a, b, c) = ◦(a × b + c) where ◦ ∈ {RN, RZ, RU, RD}

Correctly Rounded Mixed Radix FMA

correctly rounded mixed-radix +,−,×

correctly rounded mixed-radix ÷,
√

assuming we can represent the midpoint between two FP-numbers, f

the rounding of ◦k

(
x
y

)
boilds down to computing the sign of y × f − x

the rounding of ◦k
(√

x
)

boilds down to computing the sign of f × f − x

6/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Designing Mixed-Radix Operations

Definition: Fused Multiply and Add

FMA(a, b, c) = ◦(a × b + c) where ◦ ∈ {RN, RZ, RU, RD}

Correctly Rounded Mixed Radix FMA

correctly rounded mixed-radix +,−,×
correctly rounded mixed-radix ÷,

√

assuming we can represent the midpoint between two FP-numbers, f

the rounding of ◦k

(
x
y

)
boilds down to computing the sign of y × f − x

the rounding of ◦k
(√

x
)

boilds down to computing the sign of f × f − x

6/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Designing Mixed-Radix Operations

Definition: Fused Multiply and Add

FMA(a, b, c) = ◦(a × b + c) where ◦ ∈ {RN, RZ, RU, RD}

Correctly Rounded Mixed Radix FMA

correctly rounded mixed-radix +,−,×
correctly rounded mixed-radix ÷,

√

assuming we can represent the midpoint between two FP-numbers, f

the rounding of ◦k

(
x
y

)
boilds down to computing the sign of y × f − x

the rounding of ◦k
(√

x
)

boilds down to computing the sign of f × f − x

6/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Designing Mixed-Radix Operations

Definition: Fused Multiply and Add

FMA(a, b, c) = ◦(a × b + c) where ◦ ∈ {RN, RZ, RU, RD}

Correctly Rounded Mixed Radix FMA

correctly rounded mixed-radix +,−,×
correctly rounded mixed-radix ÷,

√

assuming we can represent the midpoint between two FP-numbers, f

the rounding of ◦k

(
x
y

)
boilds down to computing the sign of y × f − x

the rounding of ◦k
(√

x
)

boilds down to computing the sign of f × f − x

6/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Designing Mixed-Radix Operations

Definition: Fused Multiply and Add

FMA(a, b, c) = ◦(a × b + c) where ◦ ∈ {RN, RZ, RU, RD}

Correctly Rounded Mixed Radix FMA

correctly rounded mixed-radix +,−,×
correctly rounded mixed-radix ÷,

√

assuming we can represent the midpoint between two FP-numbers, f

the rounding of ◦k

(
x
y

)
boilds down to computing the sign of y × f − x

the rounding of ◦k
(√

x
)

boilds down to computing the sign of f × f − x

6/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Mixed Radix Arithmetic

What are the operations available in binary and decimal format?

Conversions as defined in IEEE 754
Exact comparisons
Comparison between binary and decimal floating-point numbers, N. Brisebarre, C. L.,
M. Mezzarobba, J.-M. Muller [2016]

study of the feasibility of mixed-radix comparison,
implementation of two algorithms that have been proven and thoroughly tested,

Goal: mixed-radix FMA

an emerging need for mixed-radix arithmetic

implementation of all basic arithmetic operations with one slightly more precise FMA

7/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Mixed Radix Arithmetic

What are the operations available in binary and decimal format?

Conversions as defined in IEEE 754

Exact comparisons
Comparison between binary and decimal floating-point numbers, N. Brisebarre, C. L.,
M. Mezzarobba, J.-M. Muller [2016]

study of the feasibility of mixed-radix comparison,
implementation of two algorithms that have been proven and thoroughly tested,

Goal: mixed-radix FMA

an emerging need for mixed-radix arithmetic

implementation of all basic arithmetic operations with one slightly more precise FMA

7/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Mixed Radix Arithmetic

What are the operations available in binary and decimal format?

Conversions as defined in IEEE 754
Exact comparisons
Comparison between binary and decimal floating-point numbers, N. Brisebarre, C. L.,
M. Mezzarobba, J.-M. Muller [2016]

study of the feasibility of mixed-radix comparison,
implementation of two algorithms that have been proven and thoroughly tested,

Goal: mixed-radix FMA

an emerging need for mixed-radix arithmetic

implementation of all basic arithmetic operations with one slightly more precise FMA

7/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Mixed Radix Arithmetic

What are the operations available in binary and decimal format?

Conversions as defined in IEEE 754
Exact comparisons
Comparison between binary and decimal floating-point numbers, N. Brisebarre, C. L.,
M. Mezzarobba, J.-M. Muller [2016]

study of the feasibility of mixed-radix comparison,
implementation of two algorithms that have been proven and thoroughly tested,

Goal: mixed-radix FMA

an emerging need for mixed-radix arithmetic

implementation of all basic arithmetic operations with one slightly more precise FMA

7/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Table Maker’s Dilemma

Example: consider the exact transcendental number y = ex and the computed result
ŷ = exp(x).

Correct Rounding in the easy case

ŷ

y

RN(ŷ)

enough accuracy

Correct Rounding in the hard case

ŷ

y

RN(ŷ) ?

not enough accuracy, but how much?

8/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Table Maker’s Dilemma

Example: consider the exact transcendental number y = ex and the computed result
ŷ = exp(x).

Correct Rounding in the easy case

ŷ

y

RN(ŷ)

enough accuracy

Correct Rounding in the hard case

ŷ

y

RN(ŷ) ?

not enough accuracy, but how much?

8/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Table Maker’s Dilemma

Example: consider the exact transcendental number y = ex and the computed result
ŷ = exp(x).

Correct Rounding in the easy case

ŷ

y

RN(ŷ)

enough accuracy

Correct Rounding in the hard case

ŷ

y

RN(ŷ) ?

not enough accuracy, but how much?

8/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Classical Binary FMA

Algorithm 1 Binary FMA d = ◦(a× b + c)

1: if a×b
c ̸∈

[
1
2 , 2

]
then

2: d = farpath_addition(a× b, c)
3: else
4: d = nearpath_subtraction(a× b, c)
5: end if

far-path addition

when a×b
c ̸∈

[
1
2
, 2
]

simple logic with sticky guard bit

near-path subtraction

when a×b
c ∈

[
1
2
, 2
]

Sterbenz’s lemma: (a × b)− c is exactly
representable

9/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Mixed-Radix Inexact Cancellation Cases

Mixed-Radix near-path subtraction is INEXACT!

at a certain precision

cannot compute the result with enough accuracy for correct rounding

Mixed-Radix far-path addition is not always exact!

no simple sticky bit

Obervation

Mixed-radix addition almost always inexact.

10/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Mixed-Radix Inexact Cancellation Cases

Mixed-Radix near-path subtraction is INEXACT!

at a certain precision

cannot compute the result with enough accuracy for correct rounding

Mixed-Radix far-path addition is not always exact!

no simple sticky bit

Obervation

Mixed-radix addition almost always inexact.

10/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Mixed-Radix Inexact Cancellation Cases

Mixed-Radix near-path subtraction is INEXACT!

at a certain precision

cannot compute the result with enough accuracy for correct rounding

Mixed-Radix far-path addition is not always exact!

no simple sticky bit

Obervation

Mixed-radix addition almost always inexact.

10/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Overcoming the TDM - Mixed-Radix unified format

Obervations

10 is divisible by 2.

Binary and decimal formats can be unified as

a = (−1)sa · 2Na · 5Pa · ta;

with
2k′2−1 ≤ |ta| < 2k′2 ; ta ∈ Z

min(F min − k10 − k ′
2,Emin − k2 − k ′

2) ≤ Na ≤ max(F max − k ′
2 + 1,Emax − k ′

2 + 1)

F min − k10 + Λmin
5 + 1 ≤ Pa ≤ F max + Λmax

5 + 1; Na,Pa ∈ Z.

k ′
2 = max(k2 + 1, ⌈log2(10

k10 − 1)⌉ + 1),Λ
min
5 =

⌈
log5

(
1

2k′2 − 1

)⌉
and Λ

max
5 =

⌊
log5

(
1

2k′2−1

)⌋
.

11/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Overcoming the TDM - Mixed-Radix unified format

Obervations

10 is divisible by 2.

Binary and decimal formats can be unified as

a = (−1)sa · 2Na · 5Pa · ta;

with
2k′2−1 ≤ |ta| < 2k′2 ; ta ∈ Z

min(F min − k10 − k ′
2,Emin − k2 − k ′

2) ≤ Na ≤ max(F max − k ′
2 + 1,Emax − k ′

2 + 1)

F min − k10 + Λmin
5 + 1 ≤ Pa ≤ F max + Λmax

5 + 1; Na,Pa ∈ Z.

k ′
2 = max(k2 + 1, ⌈log2(10

k10 − 1)⌉ + 1),Λ
min
5 =

⌈
log5

(
1

2k′2 − 1

)⌉
and Λ

max
5 =

⌊
log5

(
1

2k′2−1

)⌋
.

11/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Overcoming the TDM - Mixed-Radix unified format

Obervations

10 is divisible by 2.

Binary and decimal formats can be unified as

a = (−1)sa · 2Na · 5Pa · ta;

with
2k′2−1 ≤ |ta| < 2k′2 ; ta ∈ Z

min(F min − k10 − k ′
2,Emin − k2 − k ′

2) ≤ Na ≤ max(F max − k ′
2 + 1,Emax − k ′

2 + 1)

F min − k10 + Λmin
5 + 1 ≤ Pa ≤ F max + Λmax

5 + 1; Na,Pa ∈ Z.

k ′
2 = max(k2 + 1, ⌈log2(10

k10 − 1)⌉ + 1),Λ
min
5 =

⌈
log5

(
1

2k′2 − 1

)⌉
and Λ

max
5 =

⌊
log5

(
1

2k′2−1

)⌋
.

11/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Overcoming the TDM - Mixed-Radix unified format

Obervations

10 is divisible by 2.

Binary and decimal formats can be unified as

a = (−1)sa · 2Na · 5Pa · ta;

with
2k′2−1 ≤ |ta| < 2k′2 ; ta ∈ Z

min(F min − k10 − k ′
2,Emin − k2 − k ′

2) ≤ Na ≤ max(F max − k ′
2 + 1,Emax − k ′

2 + 1)

F min − k10 + Λmin
5 + 1 ≤ Pa ≤ F max + Λmax

5 + 1; Na,Pa ∈ Z.

k ′
2 = max(k2 + 1, ⌈log2(10

k10 − 1)⌉ + 1),Λ
min
5 =

⌈
log5

(
1

2k′2 − 1

)⌉
and Λ

max
5 =

⌊
log5

(
1

2k′2−1

)⌋
.

11/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Overcoming the TDM - Mixed-Radix unified format

Obervations

10 is divisible by 2.

Binary and decimal formats can be unified as

a = (−1)sa · 2Na · 5Pa · ta;

with
2k′2−1 ≤ |ta| < 2k′2 ; ta ∈ Z

min(F min − k10 − k ′
2,Emin − k2 − k ′

2) ≤ Na ≤ max(F max − k ′
2 + 1,Emax − k ′

2 + 1)

F min − k10 + Λmin
5 + 1 ≤ Pa ≤ F max + Λmax

5 + 1; Na,Pa ∈ Z.

k ′
2 = max(k2 + 1, ⌈log2(10

k10 − 1)⌉ + 1),Λ
min
5 =

⌈
log5

(
1

2k′2 − 1

)⌉
and Λ

max
5 =

⌊
log5

(
1

2k′2−1

)⌋
.

11/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Overcoming the TDM - Mixed-Radix unified format

Obervations

10 is divisible by 2.

Binary and decimal formats can be unified as

a = (−1)sa · 2Na · 5Pa · ta;

with
2k′2−1 ≤ |ta| < 2k′2 ; ta ∈ Z

min(F min − k10 − k ′
2,Emin − k2 − k ′

2) ≤ Na ≤ max(F max − k ′
2 + 1,Emax − k ′

2 + 1)

F min − k10 + Λmin
5 + 1 ≤ Pa ≤ F max + Λmax

5 + 1; Na,Pa ∈ Z.

k ′
2 = max(k2 + 1, ⌈log2(10

k10 − 1)⌉ + 1),Λ
min
5 =

⌈
log5

(
1

2k′2 − 1

)⌉
and Λ

max
5 =

⌊
log5

(
1

2k′2−1

)⌋
.

11/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Overcoming the TDM

Obervations

At a certain precision, binary to decimal conversion becomes exact.

Bound on the worst case of cancellation

occurs when (a × b)− c is relatively small

if a × b = 2L · 5M · s and c = 2N · 5P · t∣∣∣s
t
− 2N−L · 5P−M

∣∣∣ ≥ η

computed using one sided approximations

η

binary64, decimal64 2−177.61

binary128, decimal128 2−360.25

12/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Overcoming the TDM

Obervations

At a certain precision, binary to decimal conversion becomes exact.

Bound on the worst case of cancellation

occurs when (a × b)− c is relatively small

if a × b = 2L · 5M · s and c = 2N · 5P · t∣∣∣s
t
− 2N−L · 5P−M

∣∣∣ ≥ η

computed using one sided approximations

η

binary64, decimal64 2−177.61

binary128, decimal128 2−360.25

12/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Performances issues of this exact addition

Size of the long accumulator
acutal computation α = (a × b) + c − f

a, b and c inputs of the FMA, (a × b) the exact multiplication bounded into the internal mixed-radix
format
f the closest midpoint bounded into the internal mixed-radix format

ACmax (bits) ACmax (words) free bits
binary64, decimal64 4225 67 63
binary128, decimal128 62158 972 14

Obervation

In a lot of cases, a quick and not so accurate addition can be enough to perform correct
rounding in the output format.

13/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Performances issues of this exact addition

Size of the long accumulator
acutal computation α = (a × b) + c − f

a, b and c inputs of the FMA, (a × b) the exact multiplication bounded into the internal mixed-radix
format
f the closest midpoint bounded into the internal mixed-radix format

ACmax (bits) ACmax (words) free bits
binary64, decimal64 4225 67 63
binary128, decimal128 62158 972 14

Obervation

In a lot of cases, a quick and not so accurate addition can be enough to perform correct
rounding in the output format.

13/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

FMA Mixed Radix Algorithm

Algorithm 2 Mixed-Radix FMA d = ◦(a× b + c)

1: Multiplication ψ ← a× b
2: if it is an “addition” or ψc /∈

[
1
2 ; 2

]
then

3: ϕ← “far-path” binary addition
4: else
5: ϕ← “near-path” binary subtraction
6: end if
7: ρ← Conversion of ϕ to the output format
8: if ρ can round correctly then
9: return d ← ρ correctly rounded to output format

10: else
11: Compute integer rounding boundary significand f
12: α← Exact decimal addition
13: Correct ρ using f and the sign of α
14: return d ← ρ correctly rounded to output format
15: end if

14/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Test Environment and Reference implementations

Test Environment

Intel i7-7500U quad-core processor

clocked at maximally 2.7GHz

running Debian/GNU Linux 4.9.0-5 in x86-64 mode

GNU Multiple Precision Library (GMP)

mixed-radix FMA designed in a limited
timeframe
using GMP rational numbers

Goal: reasonabely fast but easy to design

Sollya

exact representation of numerical expressions

evaluated at any precision without spurious
rounding

15/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Test Environment and Reference implementations

Test Environment

Intel i7-7500U quad-core processor

clocked at maximally 2.7GHz

running Debian/GNU Linux 4.9.0-5 in x86-64 mode

GNU Multiple Precision Library (GMP)

mixed-radix FMA designed in a limited
timeframe
using GMP rational numbers

Goal: reasonabely fast but easy to design

Sollya

exact representation of numerical expressions

evaluated at any precision without spurious
rounding

15/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Performance Testing

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 50 100 150 200 250 300 350 400

C
a

s
e

s

Cycles

Timings FMA BBB -> D

Our implementation

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

C
a

s
e

s

Cycles

Timings FMA BBB -> D

GMP reference implementation

16/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Conclusion and Perspectives

Correctly Rounded Mixed-Radix FMA

two formats: binary64 and decimal64

pen and paper proof of the algorithm

overcoming the TDM and worst case of cancellation in the mixed-radix case

implementation faster than expected and extensively tested

Going further

finalize code generator implementation

optimize FMA for heterogenous precision

17/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

Thank you! Questions?

18/18 Clothilde JEANGOUDOUX / ARITH 25 / November 12th, 2018 / MIXED-RADIX FMA

