Continued Logarithm Algorithm: A probabilistic study

Pablo Rotondo
LIGM, Paris-Est Marne-Ia-Vallée

Work with
Brigitte Vallée and Alfredo Viola

RAIM 2018, November 12, 2018.

The origins

Introduced by Gosper as a mutation of continued fractions:

- gives rise to a gcd algorithm akin to Euclid's.
- quotients are powers of two:
- small information parcel.
- employs only shifts and substractions.
- appears to be simple and efficient.

The origins

Introduced by Gosper as a mutation of continued fractions:

- gives rise to a gcd algorithm akin to Euclid's.
- quotients are powers of two:
- small information parcel.
- employs only shifts and substractions.
- appears to be simple and efficient.

More recently:
\triangleright Shallit studied its worst-case performance in 2016.
\triangleright We consider its average performance!

Continued Logarithm Algorithm

A sequence of binary "divisions" beginning from (p, q) :

$$
q=2^{a} p+r, \quad 0 \leq r<2^{a} p .
$$

Continued Logarithm Algorithm

A sequence of binary "divisions" beginning from (p, q) :

$$
q=2^{a} p+r, \quad 0 \leq r<2^{a} p .
$$

Note. $a=\max \left\{k \geq 0: 2^{k} p \leq q\right\}$

Continued Logarithm Algorithm

A sequence of binary "divisions" beginning from (p, q) :

$$
q=2^{a} p+r, \quad 0 \leq r<2^{a} p
$$

Note. $a=\max \left\{k \geq 0: 2^{k} p \leq q\right\}$
Continue with the new pair

$$
(p, q) \mapsto\left(p^{\prime}, q^{\prime}\right)=\left(r, 2^{a} p\right)
$$

until the remainder r equals 0 .

Continued Logarithm Algorithm

A sequence of binary "divisions" beginning from (p, q) :

$$
q=2^{a} p+r, \quad 0 \leq r<2^{a} p .
$$

Note. $a=\max \left\{k \geq 0: 2^{k} p \leq q\right\}$
Continue with the new pair

$$
(p, q) \mapsto\left(p^{\prime}, q^{\prime}\right)=\left(r, 2^{a} p\right)
$$

until the remainder r equals 0 .
Example. Let us find $\operatorname{gcd}(13,31)$.

a	p	q	r	$2^{a} p$
1	13	31	5	26
2	5	26	6	20
1	6	20	8	12
0	8	12	4	8
1	4	8	0	8

Continued Logarithm Algorithm

A sequence of binary "divisions" beginning from (p, q) :

$$
q=2^{a} p+r, \quad 0 \leq r<2^{a} p .
$$

Note. $a=\max \left\{k \geq 0: 2^{k} p \leq q\right\}$
Continue with the new pair

$$
(p, q) \mapsto\left(p^{\prime}, q^{\prime}\right)=\left(r, 2^{a} p\right)
$$

until the remainder r equals 0 .
Example. Let us find $\operatorname{gcd}(13,31)$.

a	p	q	r	$2^{a} p$
1	13	31	5	26
2	5	26	6	20
1	6	20	8	12
0	8	12	4	8
1	4	8	0	8

- Ended with $(0,8)$, what is the gcd? \Rightarrow parasitic powers of 2 .

Consider

$$
\Omega_{N}=\{(p, q) \in \mathbb{N} \times \mathbb{N}: p \leq q \leq N\}
$$

Worst-case studied by Shallit (2016): $2 \log _{2} N+O(1)$ steps.

Consider

$$
\Omega_{N}=\{(p, q) \in \mathbb{N} \times \mathbb{N}: p \leq q \leq N\}
$$

Worst-case studied by Shallit (2016): $2 \log _{2} N+O(1)$ steps.

- Family $(p, q)=\left(1,2^{n}-1\right)$ gives the bound asymptotically.

Consider

$$
\Omega_{N}=\{(p, q) \in \mathbb{N} \times \mathbb{N}: p \leq q \leq N\}
$$

Worst-case studied by Shallit (2016): $2 \log _{2} N+O(1)$ steps.

- Family $(p, q)=\left(1,2^{n}-1\right)$ gives the bound asymptotically.

We studied the average number of steps over Ω_{N}, posed by Shallit.

Consider

$$
\Omega_{N}=\{(p, q) \in \mathbb{N} \times \mathbb{N}: p \leq q \leq N\}
$$

Worst-case studied by Shallit (2016): $2 \log _{2} N+O(1)$ steps.

- Family $(p, q)=\left(1,2^{n}-1\right)$ gives the bound asymptotically.

We studied the average number of steps over Ω_{N}, posed by Shallit.
Main result [RVV18].
Mean number of steps $E_{N}[K]$ and shifts $E_{N}[S]$ are $\Theta(\log N)$. More precisely

$$
E_{N}[K] \sim k \log N, \quad E_{N}[S] \sim \frac{\log 3-\log 2}{2 \log 2-\log 3} E_{N}[K]
$$

for an explicit constant $k \doteq 1.49283 \ldots$ given by

$$
k=\frac{2}{H}, \quad H=\text { entropy of appropriate DS }
$$

Consider

$$
\Omega_{N}=\{(p, q) \in \mathbb{N} \times \mathbb{N}: p \leq q \leq N\}
$$

Worst-case studied by Shallit (2016): $2 \log _{2} N+O(1)$ steps.

- Family $(p, q)=\left(1,2^{n}-1\right)$ gives the bound asymptotically.

We studied the average number of steps over Ω_{N}, posed by Shallit.
Main result [RVV18].
Mean number of steps $E_{N}[K]$ and shifts $E_{N}[S]$ are $\Theta(\log N)$.
More precisely

$$
E_{N}[K] \sim k \log N, \quad E_{N}[S] \sim \frac{\log 3-\log 2}{2 \log 2-\log 3} E_{N}[K]
$$

for an explicit constant $k \doteq 1.49283 \ldots$ given by

$$
k=\frac{2}{H}, \quad H=\frac{1}{\log (4 / 3)}\left(\frac{\pi^{2}}{6}+2 \sum_{j} \frac{(-1)^{j}}{2^{j} j^{2}}-(\log 2) \frac{\log 27}{\log 16}\right)
$$

Process depends only on p / q rather than (p, q).

- Map $p / q \mapsto p^{\prime} / q^{\prime}$ can be extended to $\mathcal{I}=(0,1)$
$T: \mathcal{I} \rightarrow \mathcal{I}, \quad T(x)=\frac{1}{2^{a} x}-1$,
where $a=\left\lfloor\log _{2}(1 / x)\right\rfloor$.
- Iteration gives a special continued fraction

$$
\frac{p}{q}=\frac{1}{2^{a}\left(1+\frac{p^{\prime}}{q^{\prime}}\right)}
$$

Process depends only on p / q rather than (p, q).

- Map $p / q \mapsto p^{\prime} / q^{\prime}$ can be extended to $\mathcal{I}=(0,1)$ $T: \mathcal{I} \rightarrow \mathcal{I}, \quad T(x)=\frac{1}{2^{a} x}-1$, where $a=\left\lfloor\log _{2}(1 / x)\right\rfloor$.
- Iteration gives a special continued fraction

$$
\frac{p}{q}=\frac{1}{2^{a}\left(1+\frac{p^{\prime}}{q^{\prime}}\right)} .
$$

- For Euclid's algorithm, we get the Gauss map

$$
\begin{aligned}
& S: \mathcal{I} \rightarrow \mathcal{I}, \quad S(x)=\frac{1}{x}-m, \\
& \text { where } m=\lfloor 1 / x\rfloor .
\end{aligned}
$$

- Iteration gives classical continued fractions

$$
\frac{p}{q}=\frac{1}{m+\frac{p^{\prime}}{q^{\prime}}}
$$

Process depends only on p / q rather than (p, q).

- Map $p / q \mapsto p^{\prime} / q^{\prime}$ can be extended to $\mathcal{I}=(0,1)$ $T: \mathcal{I} \rightarrow \mathcal{I}, \quad T(x)=\frac{1}{2^{a} x}-1$,
where $a=\left\lfloor\log _{2}(1 / x)\right\rfloor$.
- Iteration gives a special continued fraction

$$
\frac{p}{q}=\frac{1}{2^{a}\left(1+\frac{p^{\prime}}{q^{\prime}}\right)}
$$

- For Euclid's algorithm, we get the Gauss map

$$
\begin{aligned}
& S: \mathcal{I} \rightarrow \mathcal{I}, \quad S(x)=\frac{1}{x}-m, \\
& \text { where } m=\lfloor 1 / x\rfloor .
\end{aligned}
$$

- Iteration gives classical continued fractions

$$
\frac{p}{q}=\frac{1}{m+\frac{p^{\prime}}{q^{\prime}}}
$$

The continued fraction expansion ends (is finite) when we get 0 .

The CL dynamical system [Chan05]

The $\operatorname{map} T: \mathcal{I} \rightarrow \mathcal{I}$

Branches
For $x \in \mathcal{I}_{a}:=\left[2^{-a-1}, 2^{-a}\right]$

$$
x \mapsto T_{a}(x):=\frac{2^{-a}}{x}-1 .
$$

where $a(x):=\left\lfloor\log _{2}(1 / x)\right\rfloor$.

Inverse branches

$$
h_{a}(x):=\frac{2^{-a}}{1+x}, \quad \mathcal{H}:=\left\{h_{a}: a \in \mathbb{N}\right\},
$$

and at depth k

$$
\mathcal{H}^{k}:=\left\{h_{a_{1}} \circ \cdots \circ h_{a_{k}}: a_{1}, \ldots, a_{k} \in \mathbb{N}\right\} .
$$

Dynamical system (\mathcal{I}, T)

The map for the CL algorithm The map for Euclid's algorithm.

Density transformer

Question: If $g \in \mathcal{C}^{0}(\mathcal{I})$ were the density of $x \Longrightarrow$ density of $T(x)$?

Density transformer

Question: If $g \in \mathcal{C}^{0}(\mathcal{I})$ were the density of $x \Longrightarrow$ density of $T(x)$?

Density transformer

Question: If $g \in \mathcal{C}^{0}(\mathcal{I})$ were the density of $x \Longrightarrow$ density of $T(x)$?

Answer: The density is

$$
\begin{aligned}
\mathbf{H}[g](x) & =\sum_{h \in \mathcal{H}}\left|h^{\prime}(x)\right| g(h(x)) \\
& =\frac{1}{(1+x)^{2}} \sum_{a \geq 0} 2^{-a} g\left(\frac{2^{-a}}{1+x}\right) .
\end{aligned}
$$

Density transformer

Question: If $g \in \mathcal{C}^{0}(\mathcal{I})$ were the density of $x \Longrightarrow$ density of $T(x)$?

Answer: The density is

$$
\begin{aligned}
\mathbf{H}[g](x) & =\sum_{h \in \mathcal{H}}\left|h^{\prime}(x)\right| g(h(x)) \\
& =\frac{1}{(1+x)^{2}} \sum_{a \geq 0} 2^{-a} g\left(\frac{2^{-a}}{1+x}\right) .
\end{aligned}
$$

In general $T^{k}(x)$ has density

$$
\mathbf{H}^{k}[g](x)=\sum_{h \in \mathcal{H}^{k}}\left|h^{\prime}(x)\right| g(h(x)) .
$$

Density transformer

Question: If $g \in \mathcal{C}^{0}(\mathcal{I})$ were the density of $x \Longrightarrow$ density of $T(x)$?

Answer: The density is

$$
\begin{aligned}
\mathbf{H}[g](x) & =\sum_{h \in \mathcal{H}}\left|h^{\prime}(x)\right| g(h(x)) \\
& =\frac{1}{(1+x)^{2}} \sum_{a \geq 0} 2^{-a} g\left(\frac{2^{-a}}{1+x}\right) .
\end{aligned}
$$

In general $T^{k}(x)$ has density

$$
\mathbf{H}^{k}[g](x)=\sum_{h \in \mathcal{H}^{k}}\left|h^{\prime}(x)\right| g(h(x)) .
$$

\Longrightarrow Transfer operator H_{s} extends \mathbf{H}, introducing a variable s

$$
\mathbf{H}_{s}[g](x)=\sum_{h \in \mathcal{H}}\left|h^{\prime}(x)\right|^{s} g(h(x)) .
$$

Principles of dynamical analysis [Vallée,Flajolet,Baladi,. . .]:

Generating functions.

- \mathbf{H}_{s} describes all executions of depth 1 .
- $\mathbf{H}_{s}^{2}=\mathbf{H}_{s} \circ \mathbf{H}_{s}$ describes all executions of depth 2 .
-
- and $\left(\mathbf{I}-\mathbf{H}_{s}\right)^{-1}=\mathbf{I}+\mathbf{H}_{s}+\mathbf{H}_{s}^{2}+\ldots$ describes all executions.

Principles of dynamical analysis [Vallée,Flajolet,Baladi,. . .]:

Generating functions.

- \mathbf{H}_{s} describes all executions of depth 1 .
- $\mathbf{H}_{s}^{2}=\mathbf{H}_{s} \circ \mathbf{H}_{s}$ describes all executions of depth 2 .
-
- and $\left(\mathbf{I}-\mathbf{H}_{s}\right)^{-1}=\mathbf{I}+\mathbf{H}_{s}+\mathbf{H}_{s}^{2}+\ldots$ describes all executions.

Reduced denominators and inverse branches

Euclidean algorithm:

- Homographies

$$
h_{m}(x)=\frac{1}{m+x}
$$

with $\operatorname{det} h_{m}=-1$.

- For $h=h_{m_{1}} \circ \cdot \circ \circ h_{m_{k}}$

$$
h(0)=\frac{p}{q} \Rightarrow\left|h^{\prime}(0)\right|=\frac{1}{q^{2}},
$$

p / q reduced.

Reduced denominators and inverse branches

Euclidean algorithm:

- Homographies

$$
h_{m}(x)=\frac{1}{m+x},
$$

with $\operatorname{det} h_{m}=-1$.

- For $h=h_{m_{1}} \circ \cdot \circ \circ h_{m_{k}}$

$$
h(0)=\frac{p}{q} \Rightarrow\left|h^{\prime}(0)\right|=\frac{1}{q^{2}},
$$

p / q reduced.

CL algorithm:

- Homographies

$$
h_{a}(x)=\frac{1}{2^{a}(1+x)},
$$

with $\operatorname{det} h_{a}=-2^{a}$.

- For $h=h_{m_{1}} \circ \cdot . \circ h_{m_{k}}$
$h(0)=\frac{p}{q} \Rightarrow\left|h^{\prime}(0)\right|$ vs. $\frac{1}{q^{2}} ?$
p / q reduced.

Reduced denominators and inverse branches

Euclidean algorithm:

- Homographies

$$
h_{m}(x)=\frac{1}{m+x},
$$

with $\operatorname{det} h_{m}=-1$.

- For $h=h_{m_{1}} \circ \cdot \circ \circ h_{m_{k}}$

$$
h(0)=\frac{p}{q} \Rightarrow\left|h^{\prime}(0)\right|=\frac{1}{q^{2}},
$$

p / q reduced.

CL algorithm:

- Homographies

$$
h_{a}(x)=\frac{1}{2^{a}(1+x)},
$$

with $\operatorname{det} h_{a}=-2^{a}$.

- For $h=h_{m_{1}} \circ \cdot . \circ h_{m_{k}}$
$h(0)=\frac{p}{q} \Rightarrow\left|h^{\prime}(0)\right|$ vs. $\frac{1}{q^{2}} ?$
p / q reduced.

Problem: Denominator retrieved is engorged by powers of two.

Recording the dyadic behaviour

Solution: Dyadic numbers \mathbb{Q}_{2} !
Dyadic topology $=$ Divisibility by 2 constraints, using the dyadic norm $|\cdot|_{2}$.

Recording the dyadic behaviour

Solution: Dyadic numbers \mathbb{Q}_{2} !
Dyadic topology $=$ Divisibility by 2 constraints, using the dyadic norm $|\cdot|_{2}$.

- Introduce dyadic component
\Rightarrow mixed dynamical system $(x, y) \in \mathcal{I} \times \mathbb{Q}_{2}$

Recording the dyadic behaviour

Solution: Dyadic numbers \mathbb{Q}_{2} !
Dyadic topology $=$ Divisibility by 2 constraints, using the dyadic norm $|\cdot|_{2}$.

- Introduce dyadic component
\Rightarrow mixed dynamical system $(x, y) \in \mathcal{I} \times \mathbb{Q}_{2}$
- Incorporate \mathbb{Q}_{2} into the Transfer Operator?

Recording the dyadic behaviour

Solution: Dyadic numbers \mathbb{Q}_{2} !
Dyadic topology $=$ Divisibility by 2 constraints,
using the dyadic norm $|\cdot|_{2}$.

- Introduce dyadic component
\Rightarrow mixed dynamical system $(x, y) \in \mathcal{I} \times \mathbb{Q}_{2}$
- Incorporate \mathbb{Q}_{2} into the Transfer Operator?

Idea works!

The extended dynamical system

- Introduce $\underline{\mathcal{I}}:=\mathcal{I} \times \mathbb{Q}_{2}$ and $\underline{T}: \underline{\mathcal{I}} \rightarrow \underline{\mathcal{I}}$ as follows

$$
\underline{T}(x, y)=\left(T_{a}(x), T_{a}(y)\right),
$$

for $x \in \mathcal{I}_{a}=\left[2^{-a-1}, 2^{-a}\right]$. This gives inverse branches

$$
\underline{h}_{a}(x, y)=\left(h_{a}(x), h_{a}(y)\right), \quad(x, y) \in \underline{\mathcal{I}} .
$$

The extended dynamical system

- Introduce $\underline{\mathcal{I}}:=\mathcal{I} \times \mathbb{Q}_{2}$ and $\underline{T}: \underline{\mathcal{I}} \rightarrow \underline{\mathcal{I}}$ as follows

$$
\underline{T}(x, y)=\left(T_{a}(x), T_{a}(y)\right),
$$

for $x \in \mathcal{I}_{a}=\left[2^{-a-1}, 2^{-a}\right]$. This gives inverse branches

$$
\underline{h}_{a}(x, y)=\left(h_{a}(x), h_{a}(y)\right), \quad(x, y) \in \underline{\mathcal{I}} .
$$

Evolution is lead by the real component, which determines a.

The extended dynamical system

- Introduce $\underline{\mathcal{I}}:=\mathcal{I} \times \mathbb{Q}_{2}$ and $\underline{T}: \underline{\mathcal{I}} \rightarrow \underline{\mathcal{I}}$ as follows

$$
\underline{T}(x, y)=\left(T_{a}(x), T_{a}(y)\right),
$$

for $x \in \mathcal{I}_{a}=\left[2^{-a-1}, 2^{-a}\right]$. This gives inverse branches

$$
\underline{h}_{a}(x, y)=\left(h_{a}(x), h_{a}(y)\right), \quad(x, y) \in \underline{\mathcal{I}} .
$$

Evolution is lead by the real component, which determines a.

- For Transfer operator \Rightarrow need change of variables formula!

The extended dynamical system

- Introduce $\underline{\mathcal{I}}:=\mathcal{I} \times \mathbb{Q}_{2}$ and $\underline{T}: \underline{\mathcal{I}} \rightarrow \underline{\mathcal{I}}$ as follows

$$
\underline{T}(x, y)=\left(T_{a}(x), T_{a}(y)\right),
$$

for $x \in \mathcal{I}_{a}=\left[2^{-a-1}, 2^{-a}\right]$. This gives inverse branches

$$
\underline{h}_{a}(x, y)=\left(h_{a}(x), h_{a}(y)\right), \quad(x, y) \in \underline{\mathcal{I}} .
$$

Evolution is lead by the real component, which determines a.

- For Transfer operator \Rightarrow need change of variables formula! Haar (translation invariant) measure ν on \mathbb{Q}_{2} has one!

Functional space \mathcal{F} for the extended operator $\underline{\mathbf{H}}_{s}$

Real component directs the dynamical system:

- sections F_{y} fixing $y \in \mathbb{Q}_{2}$ asked to be $C^{1}(\mathcal{I})$.
- the dyadic component follows, demanding only integrability of

$$
y \mapsto \sup _{x} F_{y}, \quad \text { and } \quad y \mapsto \sup _{x} \partial_{x} F_{y}
$$

Functional space \mathcal{F} for the extended operator $\underline{\mathbf{H}}_{s}$

Real component directs the dynamical system:

- sections F_{y} fixing $y \in \mathbb{Q}_{2}$ asked to be $C^{1}(\mathcal{I})$.
- the dyadic component follows, demanding only integrability of

$$
y \mapsto \sup _{x} F_{y}, \quad \text { and } \quad y \mapsto \sup _{x} \partial_{x} F_{y} .
$$

Ensuing space \mathcal{F} makes $\underline{\mathbf{H}}_{s}$

- have a dominant eigenvalue and spectral gap relying strongly on the real component.

Functional space \mathcal{F} for the extended operator $\underline{\mathbf{H}}_{s}$

Real component directs the dynamical system:

- sections F_{y} fixing $y \in \mathbb{Q}_{2}$ asked to be $C^{1}(\mathcal{I})$.
- the dyadic component follows, demanding only integrability of

$$
y \mapsto \sup _{x} F_{y}, \quad \text { and } \quad y \mapsto \sup _{x} \partial_{x} F_{y}
$$

Ensuing space \mathcal{F} makes $\underline{\mathbf{H}}_{s}$

- have a dominant eigenvalue and spectral gap relying strongly on the real component.

We can finish the dynamical analysis!

Conclusion and further questions

Conclusions:

- We have studied the average number of shifts and substractions for the CL algorithm.
- Study makes an interesting use of the dyadics in the framework of dynamical analysis.

Conclusion and further questions

Conclusions:

- We have studied the average number of shifts and substractions for the CL algorithm.
- Study makes an interesting use of the dyadics in the framework of dynamical analysis.
Questions:

1. Conjecture: The successive pairs $\left(p_{i}, q_{i}\right)$ given by the algorithm satisfy

$$
\lim _{i \rightarrow \infty} \frac{1}{i} \log _{2} \operatorname{gcd}\left(p_{i}, q_{i}\right)=1 / 2
$$

Back to $(13,31)$

i	a_{i}	p_{i}	q_{i}	$\operatorname{gcd}\left(p_{i}, q_{i}\right)$
0	1	13	31	2^{0}
1	2	5	26	2^{0}
2	1	6	20	2^{1}
3	0	8	12	2^{2}
4	1	4	8	2^{2}

Conclusion and further questions

Conclusions:

- We have studied the average number of shifts and substractions for the CL algorithm.
- Study makes an interesting use of the dyadics in the framework of dynamical analysis.
Questions:

1. Conjecture: The successive pairs $\left(p_{i}, q_{i}\right)$ given by the algorithm satisfy

$$
\lim _{i \rightarrow \infty} \frac{1}{i} \log _{2} \operatorname{gcd}\left(p_{i}, q_{i}\right)=1 / 2
$$

Back to $(13,31)$

i	a_{i}	p_{i}	q_{i}	$\operatorname{gcd}\left(p_{i}, q_{i}\right)$
0	1	13	31	2^{0}
1	2	5	26	2^{0}
2	1	6	20	2^{1}
3	0	8	12	2^{2}
4	1	4	8	2^{2}

2. Comparison to other binary algorithms: binary GCD, LSB.

Conclusion and further questions

Conclusions:

- We have studied the average number of shifts and substractions for the CL algorithm.
- Study makes an interesting use of the dyadics in the framework of dynamical analysis.
Questions:

1. Conjecture: The successive pairs $\left(p_{i}, q_{i}\right)$ given by the algorithm satisfy

$$
\lim _{i \rightarrow \infty} \frac{1}{i} \log _{2} \operatorname{gcd}\left(p_{i}, q_{i}\right)=1 / 2
$$

Back to $(13,31)$

i	a_{i}	p_{i}	q_{i}	$\operatorname{gcd}\left(p_{i}, q_{i}\right)$
0	1	13	31	2^{0}
1	2	5	26	2^{0}
2	1	6	20	2^{1}
3	0	8	12	2^{2}
4	1	4	8	2^{2}

2. Comparison to other binary algorithms: binary GCD, LSB.
