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The origins

Introduced by Gosper as a mutation of continued fractions:
> gives rise to a ged algorithm akin to Euclid’s.

» quotients are powers of two:
o small information parcel.
o employs only shifts and substractions.

> appears to be simple and efficient.
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o small information parcel.
o employs only shifts and substractions.

> appears to be simple and efficient.

More recently:
>> Shallit studied its worst-case performance in 2016.

> We consider its performance!
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Continued Logarithm Algorithm
A sequence of binary “divisions” beginning from (p, q):

q=2%+r, 0<r<2%.
Note. a = max{k > 0:2*p < ¢}
Continue with the new pair
(p.q) = (¢'.d") = (r,2p),
until the remainder r equals 0.

Let us find ged(13,31).

a ‘ P q ‘ r 2%
1113 315 26
2|15 266 20
116 208 12
0|8 12|14 8
114 8|0 8

» Ended with (0,8), what is the gcd? = parasitic powers of 2.
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Consider

v ={(p,q) eNxN:p<qg<N}.
Worst-case studied by Shallit (2016): 2logy N + O(1) steps.
o Family (p,q) = (1,2™ — 1) gives the bound asymptotically.

We studied the number of steps over {2y, posed by Shallit.

Main result [RVV18].

Mean number of steps and shifts are O(log N).
More precisely

log 3—log 2
~ klog N, 2?§g2 ?fg?.EN[K]

for an explicit constant k = 1.49283 ... given by

2 log 27
kzﬁv H= log(4/3 ( +2Z 27] L 10g2)12§16)
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Process depends only on p/q rather than (p, q).
» For Euclid’s algorithm, we

» Map p/q+— p'/q" can be
extended to Z = (0,1) get the Gauss map
1
T-T—-7, T(x)=—-1, S:IT—1T, S(m):;— ,
x
where a = [logy(1/x)]. where m = |1/xz].
g Itera.tion gives 2 special > lteration gives classical
continued fraction continued fractions
P _ # P 1
q AN o= 7
(1 + (]’) q + %

The continued fraction expansion ends (is finite) when we get 0.



The CL dynamical system [Chan05]

T(z)

x

ThemapT:7T—1

Branches 1 Inverse branches
Forx € 7, :=[27%71,279] 9-a
ha(x) := , H:={hg:a €N},
9—a 1+
v To() = z L. and at depth &

where a(x) — Uogg(l/ﬂ?)J ] = {hag, 0---0hg, 1 a1,...,a; € N}.



Dynamical system (Z,T)

1)

= 2

02 0.4 06

The map for the CL algorithm The map for Euclid’s algorithm.
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Density transformer
Question: If g € C°(T) were the density of 2 = density of T'(z)?

T(x . .
. Answer: The density is

Hlg)(z) = ) _ |1 (x)| g (h(x))
=
In general T%(x) has density
) H"[g](z) = Y |W(2)] g (h(2)) .

heHE

= Transfer operator extends H, introducing a variable s

H,[g)(x) = Y [W'(2)|" g (h(x)) .

heH



Principles of dynamical analysis [Vallée, Flajolet,Baladi,. . .]:

Generating functions.

» H, describes all executions of depth 1.

» H2 = H, o H, describes all executions of depth 2.

>

» and (I-H,) ' =T+ H, +H?2 ... describes all executions.

Problem
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Generating function
in terms of
(1d-H,)*
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Generating functions.
» H, describes all executions of depth 1.

» H2 = H, o H, describes all executions of depth 2.

>

» and (I—H,) ' =I+H, +H?2 + ... describes all executions.

Problem |——> Dynamical System ——— > Transfer operator
T:X-X H

s

Asymptotics!|<«———— Generating function
Singularity in terms of
Analysis (1d-H,)!
s

Dominant Spectral properties

Behaviour at dominant singularity



Reduced denominators and inverse branches

Euclidean algorithm:
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CL algorithm:

» Homographies

1

ha(z) = 21 t2)’

with det h, = —2%.

» For h = hy,, o ™

-0 by,
D /
(o) = £ = 1/(0)] vs.

p/q reduced.

1
q2

Problem: Denominator retrieved is engorged by powers of two.
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Recording the dyadic behaviour

Solution: Dyadic numbers Q5 !
Dyadic topology = Divisibility by 2 constraints,

using the dyadic norm | - |s.

» Introduce dyadic component
= mixed dynamical system (z,y) € Z x Q2

» Incorporate Q; into the ?

Idea works!
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The extended dynamical system

» Introduce Z :=7 x Qg and T': Z — T as follows

T(z,y) = (Tu(z), Tu(y)) ,
for x € Z, = [27271,279]. This gives inverse branches
ho(z,y) = (ha(2),ha(y)) . (2,y) € L.
Evolution is lead by the real component, which determines a.

> For = need change of variables formula!

Haar (translation invariant) measure v on Q2 has one!
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Functional space F for the extended operator H,
Real component directs the dynamical system:
» sections F, fixing y € Qo asked to be C'' (7).
» the dyadic component follows, demanding only integrability of

y—supkF,, and yw—sup0,Fy.
x x

Ensuing space F makes H,

» have a dominant eigenvalue and spectral gap
relying strongly on the real component.

We can finish the dynamical analysis!

Problem |———> Dynamical System ———— Transfer operator

TX=X / H,
erating function
in terms o
)i
wsmme\ properties
Behaviou

Asymptotics!|€—— G
si
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