Continued Logarithm Algorithm: A probabilistic study

Pablo Rotondo

LIGM, Paris-Est Marne-la-Vallée

Work with Brigitte Vallée and Alfredo Viola

RAIM 2018, November 12, 2018.

The origins

Introduced by Gosper as a mutation of continued fractions:

- ▶ gives rise to a gcd algorithm akin to Euclid's.
- quotients are powers of two:
 - \circ small information parcel.
 - \circ employs only shifts and substractions.
- appears to be simple and efficient.

The origins

Introduced by Gosper as a mutation of continued fractions:

- ▶ gives rise to a gcd algorithm akin to Euclid's.
- quotients are powers of two:
 - \circ small information parcel.
 - \circ employs only shifts and substractions.
- appears to be simple and efficient.

More recently:

- ▷ Shallit studied its worst-case performance in 2016.
- ▷ We consider its average performance!

A sequence of binary "divisions" beginning from (p,q):

$$q = 2^{a}p + r$$
, $0 \le r < 2^{a}p$.

A sequence of binary "divisions" beginning from (p, q):

$$q = 2^{a}p + r$$
, $0 \le r < 2^{a}p$.

Note. $a = \max\{k \ge 0 : 2^k p \le q\}$

A sequence of binary "divisions" beginning from (p, q):

$$q = 2^{a}p + r$$
, $0 \le r < 2^{a}p$.

Note. $a = \max\{k \ge 0 : 2^k p \le q\}$

Continue with the new pair

$$(p,q)\mapsto (p',q')=(r,2^ap)\,,$$

until the remainder r equals 0.

A sequence of binary "divisions" beginning from (p, q):

$$q = \mathbf{2}^{a} p + r, \qquad 0 \le r < 2^{a} p.$$

Note. $a = \max\{k \ge 0 : 2^k p \le q\}$

Continue with the new pair

$$(p,q)\mapsto (p',q')=(r,2^ap)\,,$$

until the remainder r equals 0.

Example. Let us find gcd(13, 31).

a	p	q	r	$2^a p$
1	13	31	5	26
2	5	26	6	20
1	6	20	8	12
0	8	12	4	8
1	4	8	0	8

A sequence of binary "divisions" beginning from (p,q):

$$q = 2^{a} p + r$$
, $0 \le r < 2^{a} p$.

Note. $a = \max\{k \ge 0 : 2^k p \le q\}$

Continue with the new pair

$$(p,q)\mapsto (p',q')=(r,2^ap)\,,$$

until the remainder r equals 0.

Example. Let us find gcd(13, 31).

a	p	q	r	$2^a p$
1	13	31	5	26
2	5	26	6	20
1	6	20	8	12
0	8	12	4	8
1	4	8	0	8

• Ended with (0,8), what is the gcd? \Rightarrow parasitic powers of 2.

$$\Omega_N = \{ (p,q) \in \mathbb{N} \times \mathbb{N} : p \le q \le N \} \,.$$

Worst-case studied by Shallit (2016): $2 \log_2 N + O(1)$ steps.

$$\Omega_N = \{ (p,q) \in \mathbb{N} \times \mathbb{N} : p \le q \le N \} \,.$$

Worst-case studied by Shallit (2016): $2\log_2 N + O(1)$ steps. \circ Family $(p,q) = (1, 2^n - 1)$ gives the bound asymptotically.

$$\Omega_N = \{ (p,q) \in \mathbb{N} \times \mathbb{N} : p \le q \le N \} \,.$$

Worst-case studied by Shallit (2016): $2\log_2 N + O(1)$ steps. \circ Family $(p,q) = (1, 2^n - 1)$ gives the bound asymptotically.

We studied the average number of steps over Ω_N , posed by Shallit.

$$\Omega_N = \{ (p,q) \in \mathbb{N} \times \mathbb{N} : p \le q \le N \} \,.$$

Worst-case studied by Shallit (2016): $2\log_2 N + O(1)$ steps. \circ Family $(p,q) = (1, 2^n - 1)$ gives the bound asymptotically.

We studied the average number of steps over Ω_N , posed by Shallit.

Main result [RVV18].

Mean number of steps $E_N[K]$ and shifts $E_N[S]$ are $\Theta(\log N)$. More precisely

 $E_N[K] \sim k \log N$, $E_N[S] \sim \frac{\log 3 - \log 2}{2 \log 2 - \log 3} E_N[K]$

for an *explicit constant* $k \doteq 1.49283...$ given by

$$k = \frac{2}{H}$$
, $H =$ entropy of appropriate DS

$$\Omega_N = \{ (p,q) \in \mathbb{N} \times \mathbb{N} : p \le q \le N \} \,.$$

Worst-case studied by Shallit (2016): $2\log_2 N + O(1)$ steps. \circ Family $(p,q) = (1, 2^n - 1)$ gives the bound asymptotically.

We studied the average number of steps over Ω_N , posed by Shallit.

Main result [RVV18].

Mean number of steps $E_N[K]$ and shifts $E_N[S]$ are $\Theta(\log N)$. More precisely

 $E_N[K] \sim k \log N$, $E_N[S] \sim \frac{\log 3 - \log 2}{2 \log 2 - \log 3} E_N[K]$

for an *explicit constant* $k \doteq 1.49283...$ given by

$$k = \frac{2}{H}, \quad H = \frac{1}{\log(4/3)} \left(\frac{\pi^2}{6} + 2\sum_{j} \frac{(-1)^j}{2^j j^2} - (\log 2) \frac{\log 27}{\log 16}\right)$$

Process depends **only** on p/q rather than (p,q).

Process depends **only** on p/q rather than (p,q).

- Map $p/q \mapsto p'/q'$ can be extended to $\mathcal{I} = (0, 1)$ $T: \mathcal{I} \to \mathcal{I}, \ T(x) = \frac{1}{2^a r} - 1,$ where $a = |\log_2(1/x)|$. Iteration gives a special continued fraction $\frac{p}{q} = \frac{1}{2^a \left(1 + \frac{p'}{q'}\right)}.$
- For Euclid's algorithm, we get the Gauss map

$$S\colon \mathcal{I} o \mathcal{I}\,,\;\; oldsymbol{S}(x) = rac{1}{x} - m\,,$$

where $m = \lfloor 1/x \rfloor$.

 Iteration gives classical continued fractions

$$\frac{p}{q} = \frac{1}{m + \frac{p'}{q'}}.$$

Process depends **only** on p/q rather than (p,q).

The continued fraction expansion ends (is finite) when we get 0.

The CL dynamical system [Chan05]

Branches

For
$$x \in \mathcal{I}_a := [2^{-a-1}, 2^{-a}]$$

 $x \mapsto T_a(x) := \frac{2^{-a}}{x} - 1.$

where $a(x) := \lfloor \log_2(1/x) \rfloor$.

Inverse branches

$$h_a(x) := \frac{2^{-a}}{1+x}, \quad \mathcal{H} := \left\{ h_a : a \in \mathbb{N} \right\},$$

and at depth k

$$\mathcal{H}^k := \left\{ h_{a_1} \circ \cdots \circ h_{a_k} : a_1, \dots, a_k \in \mathbb{N} \right\}.$$

Dynamical system (\mathcal{I}, T)

The map for the CL algorithm The map for Euclid's algorithm.

Question: If $g \in \mathcal{C}^0(\mathcal{I})$ were the density of $x \Longrightarrow$ density of T(x)?

Question: If $g \in \mathcal{C}^0(\mathcal{I})$ were the density of $x \Longrightarrow$ density of T(x)?

Question: If $q \in \mathcal{C}^0(\mathcal{I})$ were the density of $x \Longrightarrow$ density of T(x)?

 $h \in \mathcal{H}$

 $= \frac{1}{(1+x)^2} \sum_{a>0} 2^{-a} g\left(\frac{2^{-a}}{1+x}\right) \,.$

Question: If $g \in \mathcal{C}^0(\mathcal{I})$ were the density of $x \Longrightarrow$ density of T(x)?

Question: If $g \in \mathcal{C}^0(\mathcal{I})$ were the density of $x \Longrightarrow$ density of T(x)?

 \implies Transfer operator \mathbf{H}_s extends \mathbf{H} , introducing a variable s

$$\mathbf{H}_{s}[g](x) = \sum_{h \in \mathcal{H}} \left| h'(x) \right|^{s} g\left(h(x) \right) \,.$$

Principles of dynamical analysis [Vallée, Flajolet, Baladi,...]:

Generating functions.

•

- H_s describes all executions of depth 1.
- $\mathbf{H}_s^2 = \mathbf{H}_s \circ \mathbf{H}_s$ describes all executions of depth 2.

▶ and
$$(\mathbf{I} - \mathbf{H}_s)^{-1} = \mathbf{I} + \mathbf{H}_s + \mathbf{H}_s^2 + \dots$$
 describes *all* executions.

Principles of dynamical analysis [Vallée, Flajolet, Baladi, ...]:

Generating functions.

•

- \mathbf{H}_s describes all executions of depth 1.
- $\mathbf{H}_s^2 = \mathbf{H}_s \circ \mathbf{H}_s$ describes all executions of depth 2.

▶ and
$$(\mathbf{I} - \mathbf{H}_s)^{-1} = \mathbf{I} + \mathbf{H}_s + \mathbf{H}_s^2 + \dots$$
 describes *all* executions.

Reduced denominators and inverse branches

Reduced denominators and inverse branches

Reduced denominators and inverse branches

Problem: Denominator retrieved is engorged by powers of two.

Solution: Dyadic numbers \mathbb{Q}_2 !

Dyadic topology = Divisibility by 2 constraints,

using the dyadic norm $|\cdot|_2$.

Solution: Dyadic numbers \mathbb{Q}_2 !

Dyadic topology = Divisibility by 2 constraints,

using the dyadic norm $|\cdot|_2$.

► Introduce dyadic component \Rightarrow mixed dynamical system $(x, y) \in \mathcal{I} \times \mathbb{Q}_2$

Solution: Dyadic numbers \mathbb{Q}_2 !

Dyadic topology = Divisibility by 2 constraints,

using the dyadic norm $|\cdot|_2$.

Introduce dyadic component

 \Rightarrow mixed dynamical system $(x, y) \in \mathcal{I} imes \mathbb{Q}_2$

Incorporate Q₂ into the Transfer Operator?

Solution: Dyadic numbers \mathbb{Q}_2 !

Dyadic topology = Divisibility by 2 constraints,

using the dyadic norm $|\cdot|_2$.

Introduce dyadic component

 \Rightarrow mixed dynamical system $(x, y) \in \mathcal{I} imes \mathbb{Q}_2$

Incorporate Q₂ into the Transfer Operator?

Idea works!

• Introduce $\underline{\mathcal{I}} := \underline{\mathcal{I}} \times \mathbb{Q}_2$ and $\underline{T} : \underline{\mathcal{I}} \to \underline{\mathcal{I}}$ as follows

 $\underline{T}(x,y) = \left(T_a(x), T_a(y)\right),$

for $x \in \mathcal{I}_a = [2^{-a-1}, 2^{-a}]$. This gives inverse branches

 $\underline{h}_a(x,y) = (\underline{h}_a(x), \underline{h}_a(y)) , \qquad (x,y) \in \underline{\mathcal{I}} .$

• Introduce $\underline{\mathcal{I}} := \underline{\mathcal{I}} \times \mathbb{Q}_2$ and $\underline{T} : \underline{\mathcal{I}} \to \underline{\mathcal{I}}$ as follows

 $\underline{T}(x,y) = \left(\underline{T_a}(x), \underline{T_a}(y)\right),$

for $x \in \mathcal{I}_a = [2^{-a-1}, 2^{-a}]$. This gives inverse branches

 $\underline{h}_a(x,y) = (\underline{h}_a(x), \underline{h}_a(y)) , \qquad (x,y) \in \underline{\mathcal{I}} .$

Evolution is lead by the real component, which determines a.

• Introduce $\underline{\mathcal{I}} := \underline{\mathcal{I}} \times \mathbb{Q}_2$ and $\underline{T} : \underline{\mathcal{I}} \to \underline{\mathcal{I}}$ as follows

 $\underline{T}(x,y) = (T_a(x), T_a(y)),$

for $x \in \mathcal{I}_a = [2^{-a-1}, 2^{-a}]$. This gives inverse branches

 $\underline{h}_a(x,y) = (\underline{h}_a(x), \underline{h}_a(y)) , \qquad (x,y) \in \underline{\mathcal{I}} .$

Evolution is lead by the real component, which determines a.

For Transfer operator ⇒ need change of variables formula!

• Introduce $\underline{\mathcal{I}} := \underline{\mathcal{I}} \times \mathbb{Q}_2$ and $\underline{T} : \underline{\mathcal{I}} \to \underline{\mathcal{I}}$ as follows

 $\underline{T}(x,y) = (T_a(x), T_a(y)),$

for $x \in \mathcal{I}_a = [2^{-a-1}, 2^{-a}]$. This gives inverse branches

 $\underline{h}_a(x,y) = (\underline{h}_a(x), \underline{h}_a(y)) , \qquad (x,y) \in \underline{\mathcal{I}} .$

Evolution is lead by the real component, which determines a.

For Transfer operator ⇒ need change of variables formula! Haar (translation invariant) measure ν on Q₂ has one!

Functional space \mathcal{F} for the extended operator $\underline{\mathbf{H}}_s$

Real component directs the dynamical system:

- sections F_y fixing $y \in \mathbb{Q}_2$ asked to be $C^1(\mathcal{I})$.
- the dyadic component follows, demanding only integrability of

$$y \mapsto \sup_x F_y$$
, and $y \mapsto \sup_x \partial_x F_y$.

Functional space \mathcal{F} for the extended operator $\underline{\mathbf{H}}_s$

Real component directs the dynamical system:

- sections F_y fixing $y \in \mathbb{Q}_2$ asked to be $C^1(\mathcal{I})$.
- the dyadic component follows, demanding only integrability of

$$y \mapsto \sup_x F_y$$
, and $y \mapsto \sup_x \partial_x F_y$.

Ensuing space \mathcal{F} makes $\underline{\mathbf{H}}_{s}$

have a dominant eigenvalue and spectral gap relying strongly on the real component.

Functional space \mathcal{F} for the extended operator $\underline{\mathbf{H}}_s$

Real component directs the dynamical system:

- sections F_y fixing $y \in \mathbb{Q}_2$ asked to be $C^1(\mathcal{I})$.
- the dyadic component follows, demanding only integrability of

$$y \mapsto \sup_x F_y$$
, and $y \mapsto \sup_x \partial_x F_y$.

Ensuing space \mathcal{F} makes $\underline{\mathbf{H}}_{s}$

have a dominant eigenvalue and spectral gap relying strongly on the real component.

We can finish the dynamical analysis!

Conclusions:

- We have studied the average number of shifts and substractions for the CL algorithm.
- Study makes an interesting use of the dyadics in the framework of dynamical analysis.

Conclusions:

- We have studied the average number of shifts and substractions for the CL algorithm.
- Study makes an interesting use of the dyadics in the framework of dynamical analysis.

Questions:

1. Conjecture: The successive pairs (p_i,q_i) given by the algorithm satisfy

$$\lim_{i \to \infty} \frac{1}{i} \log_2 \gcd(p_i, q_i) = 1/2.$$

Back to (13, 31)

i	a_i	p_i	q_i	$gcd(p_i, q_i)$
0	1	13	31	2^{0}
1	2	5	26	2^0
2	1	6	20	2^{1}
3	0	8	12	2^{2}
4	1	4	8	2^{2}

Conclusions:

- We have studied the average number of shifts and substractions for the CL algorithm.
- Study makes an interesting use of the dyadics in the framework of dynamical analysis.

Questions:

1. Conjecture: The successive pairs (p_i,q_i) given by the algorithm satisfy

$$\lim_{i \to \infty} \frac{1}{i} \log_2 \gcd(p_i, q_i) = 1/2.$$

Back to (13, 31)

i	a_i	p_i	q_i	$gcd(p_i, q_i)$
0	1	13	31	2^{0}
1	2	5	26	2^0
2	1	6	20	2^{1}
3	0	8	12	2^{2}
4	1	4	8	2^2

2. Comparison to other binary algorithms: binary GCD, LSB.

Conclusions:

- We have studied the average number of shifts and substractions for the CL algorithm.
- Study makes an interesting use of the dyadics in the framework of dynamical analysis.

Questions:

1. Conjecture: The successive pairs (p_i,q_i) given by the algorithm satisfy

$$\lim_{i \to \infty} \frac{1}{i} \log_2 \gcd(p_i, q_i) = 1/2.$$

Back to (13, 31)

i	a_i	p_i	q_i	$gcd(p_i, q_i)$
0	1	13	31	2^{0}
1	2	5	26	2^0
2	1	6	20	2^{1}
3	0	8	12	2^{2}
4	1	4	8	2^2

2. Comparison to other binary algorithms: binary GCD, LSB.