
Continued Logarithm Algorithm:
A probabilistic study

Pablo Rotondo
LIGM, Paris-Est Marne-la-Vallée

Work with

Brigitte Vallée and Alfredo Viola

RAIM 2018, November 12, 2018.

The origins

Introduced by Gosper as a mutation of continued fractions:

I gives rise to a gcd algorithm akin to Euclid’s.

I quotients are powers of two:
◦ small information parcel.
◦ employs only shifts and substractions.

I appears to be simple and efficient.

More recently:

B Shallit studied its worst-case performance in 2016.

B We consider its average performance!

The origins

Introduced by Gosper as a mutation of continued fractions:

I gives rise to a gcd algorithm akin to Euclid’s.

I quotients are powers of two:
◦ small information parcel.
◦ employs only shifts and substractions.

I appears to be simple and efficient.

More recently:

B Shallit studied its worst-case performance in 2016.

B We consider its average performance!

Continued Logarithm Algorithm
A sequence of binary “divisions” beginning from (p, q):

q = 2ap+ r , 0 ≤ r < 2ap .

Note. a = max{k ≥ 0 : 2kp ≤ q}
Continue with the new pair

(p, q) 7→ (p′, q′) = (r, 2ap) ,

until the remainder r equals 0.

Example. Let us find gcd(13, 31).

a p q r 2ap

1 13 31 5 26
2 5 26 6 20
1 6 20 8 12
0 8 12 4 8
1 4 8 0 8

I Ended with (0, 8), what is the gcd? ⇒ parasitic powers of 2.

Continued Logarithm Algorithm
A sequence of binary “divisions” beginning from (p, q):

q = 2ap+ r , 0 ≤ r < 2ap .

Note. a = max{k ≥ 0 : 2kp ≤ q}

Continue with the new pair

(p, q) 7→ (p′, q′) = (r, 2ap) ,

until the remainder r equals 0.

Example. Let us find gcd(13, 31).

a p q r 2ap

1 13 31 5 26
2 5 26 6 20
1 6 20 8 12
0 8 12 4 8
1 4 8 0 8

I Ended with (0, 8), what is the gcd? ⇒ parasitic powers of 2.

Continued Logarithm Algorithm
A sequence of binary “divisions” beginning from (p, q):

q = 2ap+ r , 0 ≤ r < 2ap .

Note. a = max{k ≥ 0 : 2kp ≤ q}
Continue with the new pair

(p, q) 7→ (p′, q′) = (r, 2ap) ,

until the remainder r equals 0.

Example. Let us find gcd(13, 31).

a p q r 2ap

1 13 31 5 26
2 5 26 6 20
1 6 20 8 12
0 8 12 4 8
1 4 8 0 8

I Ended with (0, 8), what is the gcd? ⇒ parasitic powers of 2.

Continued Logarithm Algorithm
A sequence of binary “divisions” beginning from (p, q):

q = 2ap+ r , 0 ≤ r < 2ap .

Note. a = max{k ≥ 0 : 2kp ≤ q}
Continue with the new pair

(p, q) 7→ (p′, q′) = (r, 2ap) ,

until the remainder r equals 0.

Example. Let us find gcd(13, 31).

a p q r 2ap

1 13 31 5 26
2 5 26 6 20
1 6 20 8 12
0 8 12 4 8
1 4 8 0 8

I Ended with (0, 8), what is the gcd? ⇒ parasitic powers of 2.

Continued Logarithm Algorithm
A sequence of binary “divisions” beginning from (p, q):

q = 2ap+ r , 0 ≤ r < 2ap .

Note. a = max{k ≥ 0 : 2kp ≤ q}
Continue with the new pair

(p, q) 7→ (p′, q′) = (r, 2ap) ,

until the remainder r equals 0.

Example. Let us find gcd(13, 31).

a p q r 2ap

1 13 31 5 26
2 5 26 6 20
1 6 20 8 12
0 8 12 4 8
1 4 8 0 8

I Ended with (0, 8), what is the gcd? ⇒ parasitic powers of 2.

Consider
ΩN = {(p, q) ∈ N× N : p ≤ q ≤ N} .

Worst-case studied by Shallit (2016): 2 log2N +O(1) steps.

◦ Family (p, q) = (1, 2n − 1) gives the bound asymptotically.

We studied the average number of steps over ΩN , posed by Shallit.

Main result [RVV18].

Mean number of steps EN [K] and shifts EN [S] are Θ(logN).

More precisely

EN [K] ∼ k logN , EN [S] ∼ log 3−log 2
2 log 2−log 3 EN [K]

for an explicit constant k
.
= 1.49283 . . . given by

k =
2

H
, H =

Consider
ΩN = {(p, q) ∈ N× N : p ≤ q ≤ N} .

Worst-case studied by Shallit (2016): 2 log2N +O(1) steps.
◦ Family (p, q) = (1, 2n − 1) gives the bound asymptotically.

We studied the average number of steps over ΩN , posed by Shallit.

Main result [RVV18].

Mean number of steps EN [K] and shifts EN [S] are Θ(logN).

More precisely

EN [K] ∼ k logN , EN [S] ∼ log 3−log 2
2 log 2−log 3 EN [K]

for an explicit constant k
.
= 1.49283 . . . given by

k =
2

H
, H =

Consider
ΩN = {(p, q) ∈ N× N : p ≤ q ≤ N} .

Worst-case studied by Shallit (2016): 2 log2N +O(1) steps.
◦ Family (p, q) = (1, 2n − 1) gives the bound asymptotically.

We studied the average number of steps over ΩN , posed by Shallit.

Main result [RVV18].

Mean number of steps EN [K] and shifts EN [S] are Θ(logN).

More precisely

EN [K] ∼ k logN , EN [S] ∼ log 3−log 2
2 log 2−log 3 EN [K]

for an explicit constant k
.
= 1.49283 . . . given by

k =
2

H
, H =

Consider
ΩN = {(p, q) ∈ N× N : p ≤ q ≤ N} .

Worst-case studied by Shallit (2016): 2 log2N +O(1) steps.
◦ Family (p, q) = (1, 2n − 1) gives the bound asymptotically.

We studied the average number of steps over ΩN , posed by Shallit.

Main result [RVV18].

Mean number of steps EN [K] and shifts EN [S] are Θ(logN).

More precisely

EN [K] ∼ k logN , EN [S] ∼ log 3−log 2
2 log 2−log 3 EN [K]

for an explicit constant k
.
= 1.49283 . . . given by

k =
2

H
, H = entropy of appropriate DS

Consider
ΩN = {(p, q) ∈ N× N : p ≤ q ≤ N} .

Worst-case studied by Shallit (2016): 2 log2N +O(1) steps.
◦ Family (p, q) = (1, 2n − 1) gives the bound asymptotically.

We studied the average number of steps over ΩN , posed by Shallit.

Main result [RVV18].

Mean number of steps EN [K] and shifts EN [S] are Θ(logN).

More precisely

EN [K] ∼ k logN , EN [S] ∼ log 3−log 2
2 log 2−log 3 EN [K]

for an explicit constant k
.
= 1.49283 . . . given by

k =
2

H
, H = 1

log(4/3)

(
π2

6 + 2
∑
j

(−1)j
2jj2

− (log 2) log 27log 16

)

Process depends only on p/q rather than (p, q).

I Map p/q 7→ p′/q′ can be
extended to I = (0, 1)

T : I → I , T (x) = 1

2ax
−1 ,

where a = blog2(1/x)c.
I Iteration gives a special

continued fraction

p

q
=

1

2a
(
1 + p′

q′

) .

I For Euclid’s algorithm, we
get the Gauss map

S : I → I , S(x) = 1

x
−m,

where m = b1/xc.

I Iteration gives classical
continued fractions

p

q
=

1

m+ p′

q′

.

The continued fraction expansion ends (is finite) when we get 0.

Process depends only on p/q rather than (p, q).

I Map p/q 7→ p′/q′ can be
extended to I = (0, 1)

T : I → I , T (x) = 1

2ax
−1 ,

where a = blog2(1/x)c.
I Iteration gives a special

continued fraction

p

q
=

1

2a
(
1 + p′

q′

) .

I For Euclid’s algorithm, we
get the Gauss map

S : I → I , S(x) = 1

x
−m,

where m = b1/xc.

I Iteration gives classical
continued fractions

p

q
=

1

m+ p′

q′

.

The continued fraction expansion ends (is finite) when we get 0.

Process depends only on p/q rather than (p, q).

I Map p/q 7→ p′/q′ can be
extended to I = (0, 1)

T : I → I , T (x) = 1

2ax
−1 ,

where a = blog2(1/x)c.
I Iteration gives a special

continued fraction

p

q
=

1

2a
(
1 + p′

q′

) .

I For Euclid’s algorithm, we
get the Gauss map

S : I → I , S(x) = 1

x
−m,

where m = b1/xc.

I Iteration gives classical
continued fractions

p

q
=

1

m+ p′

q′

.

The continued fraction expansion ends (is finite) when we get 0.

The CL dynamical system [Chan05]

1
x

1

T(x)

The map T : I → I

Branches

For x ∈ Ia := [2−a−1, 2−a]

x 7→ Ta(x) :=
2−a

x
− 1 .

where a(x) := blog2(1/x)c .

Inverse branches

ha(x) :=
2−a

1 + x
, H := {ha : a ∈ N} ,

and at depth k

Hk := {ha1 ◦ · · · ◦ hak : a1, . . . , ak ∈ N} .

Dynamical system (I, T)

1
x

1

T(x)

The map for the CL algorithm

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

T(x)

The map for Euclid’s algorithm.

Density transformer
Question: If g ∈ C0(I) were the density of x =⇒ density of T (x)?

1
x

1

T(x)

|dh0(y)||dh1(y)||dh2(y)||dh3(y)|

dy

Answer: The density is

H[g](x) =
∑
h∈H

∣∣h′(x)∣∣ g (h(x))
=

1

(1 + x)2

∑
a≥0

2−a g

(
2−a

1 + x

)
.

In general T k(x) has density

Hk[g](x) =
∑
h∈Hk

∣∣h′(x)∣∣ g (h(x)) .
=⇒ Transfer operator Hs extends H, introducing a variable s

Hs[g](x) =
∑
h∈H

∣∣h′(x)∣∣s g (h(x)) .

Density transformer
Question: If g ∈ C0(I) were the density of x =⇒ density of T (x)?

1
x

1

T(x)

|dh0(y)||dh1(y)||dh2(y)||dh3(y)|

dy

Answer: The density is

H[g](x) =
∑
h∈H

∣∣h′(x)∣∣ g (h(x))
=

1

(1 + x)2

∑
a≥0

2−a g

(
2−a

1 + x

)
.

In general T k(x) has density

Hk[g](x) =
∑
h∈Hk

∣∣h′(x)∣∣ g (h(x)) .
=⇒ Transfer operator Hs extends H, introducing a variable s

Hs[g](x) =
∑
h∈H

∣∣h′(x)∣∣s g (h(x)) .

Density transformer
Question: If g ∈ C0(I) were the density of x =⇒ density of T (x)?

1
x

1

T(x)

|dh0(y)||dh1(y)||dh2(y)||dh3(y)|

dy

Answer: The density is

H[g](x) =
∑
h∈H

∣∣h′(x)∣∣ g (h(x))
=

1

(1 + x)2

∑
a≥0

2−a g

(
2−a

1 + x

)
.

In general T k(x) has density

Hk[g](x) =
∑
h∈Hk

∣∣h′(x)∣∣ g (h(x)) .
=⇒ Transfer operator Hs extends H, introducing a variable s

Hs[g](x) =
∑
h∈H

∣∣h′(x)∣∣s g (h(x)) .

Density transformer
Question: If g ∈ C0(I) were the density of x =⇒ density of T (x)?

1
x

1

T(x)

|dh0(y)||dh1(y)||dh2(y)||dh3(y)|

dy

Answer: The density is

H[g](x) =
∑
h∈H

∣∣h′(x)∣∣ g (h(x))
=

1

(1 + x)2

∑
a≥0

2−a g

(
2−a

1 + x

)
.

In general T k(x) has density

Hk[g](x) =
∑
h∈Hk

∣∣h′(x)∣∣ g (h(x)) .

=⇒ Transfer operator Hs extends H, introducing a variable s

Hs[g](x) =
∑
h∈H

∣∣h′(x)∣∣s g (h(x)) .

Density transformer
Question: If g ∈ C0(I) were the density of x =⇒ density of T (x)?

1
x

1

T(x)

|dh0(y)||dh1(y)||dh2(y)||dh3(y)|

dy

Answer: The density is

H[g](x) =
∑
h∈H

∣∣h′(x)∣∣ g (h(x))
=

1

(1 + x)2

∑
a≥0

2−a g

(
2−a

1 + x

)
.

In general T k(x) has density

Hk[g](x) =
∑
h∈Hk

∣∣h′(x)∣∣ g (h(x)) .
=⇒ Transfer operator Hs extends H, introducing a variable s

Hs[g](x) =
∑
h∈H

∣∣h′(x)∣∣s g (h(x)) .

Principles of dynamical analysis [Vallée,Flajolet,Baladi,. . .]:

Generating functions.

I Hs describes all executions of depth 1.

I H2
s = Hs ◦Hs describes all executions of depth 2.

I
...

I and (I−Hs)
−1

= I+Hs +H2
s + . . . describes all executions.

Principles of dynamical analysis [Vallée,Flajolet,Baladi,. . .]:

Generating functions.

I Hs describes all executions of depth 1.

I H2
s = Hs ◦Hs describes all executions of depth 2.

I
...

I and (I−Hs)
−1

= I+Hs +H2
s + . . . describes all executions.

Reduced denominators and inverse branches

Euclidean algorithm:

I Homographies

hm(x) =
1

m+ x
,

with dethm = −1.

I For h = hm1 ◦
. . . ◦ hmk

h(0) =
p

q
⇒ |h′(0)| = 1

q2
,

p/q reduced.

CL algorithm:

I Homographies

ha(x) =
1

2a(1 + x)
,

with detha = −2a.

I For h = hm1 ◦
. . . ◦ hmk

h(0) =
p

q
⇒ |h′(0)| vs.

1

q2
?

p/q reduced.

Problem: Denominator retrieved is engorged by powers of two.

Reduced denominators and inverse branches

Euclidean algorithm:

I Homographies

hm(x) =
1

m+ x
,

with dethm = −1.

I For h = hm1 ◦
. . . ◦ hmk

h(0) =
p

q
⇒ |h′(0)| = 1

q2
,

p/q reduced.

CL algorithm:

I Homographies

ha(x) =
1

2a(1 + x)
,

with detha = −2a.

I For h = hm1 ◦
. . . ◦ hmk

h(0) =
p

q
⇒ |h′(0)| vs.

1

q2
?

p/q reduced.

Problem: Denominator retrieved is engorged by powers of two.

Reduced denominators and inverse branches

Euclidean algorithm:

I Homographies

hm(x) =
1

m+ x
,

with dethm = −1.

I For h = hm1 ◦
. . . ◦ hmk

h(0) =
p

q
⇒ |h′(0)| = 1

q2
,

p/q reduced.

CL algorithm:

I Homographies

ha(x) =
1

2a(1 + x)
,

with detha = −2a.

I For h = hm1 ◦
. . . ◦ hmk

h(0) =
p

q
⇒ |h′(0)| vs.

1

q2
?

p/q reduced.

Problem: Denominator retrieved is engorged by powers of two.

Recording the dyadic behaviour

Solution: Dyadic numbers Q2 !

Dyadic topology = Divisibility by 2 constraints ,

using the dyadic norm | · |2.

I Introduce dyadic component
⇒ mixed dynamical system (x, y) ∈ I ×Q2

I Incorporate Q2 into the Transfer Operator?

Idea works!

Recording the dyadic behaviour

Solution: Dyadic numbers Q2 !

Dyadic topology = Divisibility by 2 constraints ,

using the dyadic norm | · |2.

I Introduce dyadic component
⇒ mixed dynamical system (x, y) ∈ I ×Q2

I Incorporate Q2 into the Transfer Operator?

Idea works!

Recording the dyadic behaviour

Solution: Dyadic numbers Q2 !

Dyadic topology = Divisibility by 2 constraints ,

using the dyadic norm | · |2.

I Introduce dyadic component
⇒ mixed dynamical system (x, y) ∈ I ×Q2

I Incorporate Q2 into the Transfer Operator?

Idea works!

Recording the dyadic behaviour

Solution: Dyadic numbers Q2 !

Dyadic topology = Divisibility by 2 constraints ,

using the dyadic norm | · |2.

I Introduce dyadic component
⇒ mixed dynamical system (x, y) ∈ I ×Q2

I Incorporate Q2 into the Transfer Operator?

Idea works!

The extended dynamical system

I Introduce I := I ×Q2 and T : I → I as follows

T (x, y) = (Ta(x), Ta(y)) ,

for x ∈ Ia = [2−a−1, 2−a]. This gives inverse branches

ha(x, y) = (ha(x), ha(y)) , (x, y) ∈ I .

Evolution is lead by the real component, which determines a.

I For Transfer operator ⇒ need change of variables formula!

Haar (translation invariant) measure ν on Q2 has one!

The extended dynamical system

I Introduce I := I ×Q2 and T : I → I as follows

T (x, y) = (Ta(x), Ta(y)) ,

for x ∈ Ia = [2−a−1, 2−a]. This gives inverse branches

ha(x, y) = (ha(x), ha(y)) , (x, y) ∈ I .

Evolution is lead by the real component, which determines a.

I For Transfer operator ⇒ need change of variables formula!

Haar (translation invariant) measure ν on Q2 has one!

The extended dynamical system

I Introduce I := I ×Q2 and T : I → I as follows

T (x, y) = (Ta(x), Ta(y)) ,

for x ∈ Ia = [2−a−1, 2−a]. This gives inverse branches

ha(x, y) = (ha(x), ha(y)) , (x, y) ∈ I .

Evolution is lead by the real component, which determines a.

I For Transfer operator ⇒ need change of variables formula!

Haar (translation invariant) measure ν on Q2 has one!

The extended dynamical system

I Introduce I := I ×Q2 and T : I → I as follows

T (x, y) = (Ta(x), Ta(y)) ,

for x ∈ Ia = [2−a−1, 2−a]. This gives inverse branches

ha(x, y) = (ha(x), ha(y)) , (x, y) ∈ I .

Evolution is lead by the real component, which determines a.

I For Transfer operator ⇒ need change of variables formula!

Haar (translation invariant) measure ν on Q2 has one!

Functional space F for the extended operator Hs

Real component directs the dynamical system:

I sections Fy fixing y ∈ Q2 asked to be C1(I).
I the dyadic component follows, demanding only integrability of

y 7→ sup
x
Fy , and y 7→ sup

x
∂xFy .

Ensuing space F makes Hs

I have a dominant eigenvalue and spectral gap
relying strongly on the real component.

We can finish the dynamical analysis!

Functional space F for the extended operator Hs

Real component directs the dynamical system:

I sections Fy fixing y ∈ Q2 asked to be C1(I).
I the dyadic component follows, demanding only integrability of

y 7→ sup
x
Fy , and y 7→ sup

x
∂xFy .

Ensuing space F makes Hs

I have a dominant eigenvalue and spectral gap
relying strongly on the real component.

We can finish the dynamical analysis!

Functional space F for the extended operator Hs

Real component directs the dynamical system:

I sections Fy fixing y ∈ Q2 asked to be C1(I).
I the dyadic component follows, demanding only integrability of

y 7→ sup
x
Fy , and y 7→ sup

x
∂xFy .

Ensuing space F makes Hs

I have a dominant eigenvalue and spectral gap
relying strongly on the real component.

We can finish the dynamical analysis!

Conclusion and further questions
Conclusions:

I We have studied the average number of shifts and
substractions for the CL algorithm.

I Study makes an interesting use of the dyadics in the
framework of dynamical analysis.

Questions:

1. Conjecture: The successive pairs (pi, qi) given by the
algorithm satisfy

lim
i→∞

1
i log2 gcd(pi, qi) = 1/2 .

Back to (13, 31)
i ai pi qi gcd(pi, qi)

0 1 13 31 20

1 2 5 26 20

2 1 6 20 21

3 0 8 12 22

4 1 4 8 22

2. Comparison to other binary algorithms: binary GCD, LSB.

Conclusion and further questions
Conclusions:

I We have studied the average number of shifts and
substractions for the CL algorithm.

I Study makes an interesting use of the dyadics in the
framework of dynamical analysis.

Questions:

1. Conjecture: The successive pairs (pi, qi) given by the
algorithm satisfy

lim
i→∞

1
i log2 gcd(pi, qi) = 1/2 .

Back to (13, 31)
i ai pi qi gcd(pi, qi)

0 1 13 31 20

1 2 5 26 20

2 1 6 20 21

3 0 8 12 22

4 1 4 8 22

2. Comparison to other binary algorithms: binary GCD, LSB.

Conclusion and further questions
Conclusions:

I We have studied the average number of shifts and
substractions for the CL algorithm.

I Study makes an interesting use of the dyadics in the
framework of dynamical analysis.

Questions:

1. Conjecture: The successive pairs (pi, qi) given by the
algorithm satisfy

lim
i→∞

1
i log2 gcd(pi, qi) = 1/2 .

Back to (13, 31)
i ai pi qi gcd(pi, qi)

0 1 13 31 20

1 2 5 26 20

2 1 6 20 21

3 0 8 12 22

4 1 4 8 22

2. Comparison to other binary algorithms: binary GCD, LSB.

Conclusion and further questions
Conclusions:

I We have studied the average number of shifts and
substractions for the CL algorithm.

I Study makes an interesting use of the dyadics in the
framework of dynamical analysis.

Questions:

1. Conjecture: The successive pairs (pi, qi) given by the
algorithm satisfy

lim
i→∞

1
i log2 gcd(pi, qi) = 1/2 .

Back to (13, 31)
i ai pi qi gcd(pi, qi)

0 1 13 31 20

1 2 5 26 20

2 1 6 20 21

3 0 8 12 22

4 1 4 8 22

2. Comparison to other binary algorithms: binary GCD, LSB.

	Introduction
	The CL Dynamical system
	Extended system and results
	Conclusions and extensions

